classBaseConfig():"""General configurations appiled to all models"""num_epochs =2#迭代次数num_batches_show_loss =100# Number of batchs to show lossnum_batches_validate =1000# Number of batchs to check metrics on validation datasetbatch_size =128# 一个batch里几个句子learning_rate =0.0001# 学习率num_workers =4# Number of workers for data loading 根据你的CPU数量有关num_clicked_news_a_user =50# Number of sampled click history for each usernum_words_title =20#一个标题有几个单词num_words_abstract =50#一个摘要有多少个单词word_freq_threshold =1#单词频度的阈值,多少才能认为是感兴趣的单词entity_freq_threshold =2#实体频度阈值,多少才能认为是感兴趣的实体entity_confidence_threshold =0.5#实体置信度阈值,多少才能被认为是有用的实体negative_sampling_ratio =2# K #消极样本取样率dropout_probability =0.2#dropout 防止过拟合# Modify the following by the output of `src/dataprocess.py`num_words =1+101220#单词量num_categories =1+295#类别数量num_entities =1+21842#实体数量num_users =1+711222#用户数量word_embedding_dim =300#单词嵌入维度category_embedding_dim =100#类别嵌入维度# Modify the following only if you use another datasetentity_embedding_dim =100#实体嵌入维度# For additive attentionquery_vector_dim =200#查询向量维度
更改”.m“文件:function varargout untitled1(varargin)% UNTITLED1 MATLAB code for untitled1.fig% UNTITLED1, by itself, creates a new UNTITLED1 or raises the existing% singleton*.%% H UNTITLED1 returns the handle to a new UNTITLED…
内容 import torch
import torch.nn as nn
import torch.nn.functional as F
from src.model.general.attention.additive import AdditiveAttentiondevice torch.device("cuda:0" if torch.cuda.is_available() else "cpu")class KCNN(torch.nn.Module):…
1. 题目
给定两个由小写字母构成的字符串 A 和 B ,只要我们可以通过交换 A 中的两个字母得到与 B 相等的结果,就返回 true ;否则返回 false 。
示例 1:
输入: A "ab", B "ba"
输出:…
感觉还是挺简单,这里只是方便之后回来瞅瞅
import torch
import torch.nn as nn
import torch.nn.functional as Fclass Attention(torch.nn.Module):"""Attention Net.Input embedding vectors (produced by KCNN) of a candidate news and all of…