ASP.NET MVC3 系列教程 - 部署你的WEB应用到IIS 6.0

I:ASP.NET MVC3 部署的前期工作

1.确认部署的服务器操作系统环境

首先我们确认服务器的操作系统版本
可以从系统命令行工具里输入: systeminfo 获取相关操作系统信息例如
image
然后再确认IIS版本信息 -> 打开IIS管理工具即可
image
接着确认.NET Framework的版本
可以在系统命令行工具执行:
cd /d %windir%\Microsoft.NET\Framework
dir /O
image 

2.选择部署方案

部署方案目前就个人而言,将归纳为 3 种方案
A:带源代码文件的部署方案(仅适用于Web Site)
B:不带源代码文件的部署方案(适用于Web Site/Web Application)
C:不带源代码文件 并 提前经过 ASP.NET预编译 的部署方案(适用于Web Site/Web Application)

3.认识Temporary ASP.NET Files目录

我不清楚在座的读者有多少人认识这个目录,所以在此我还是简单地提及一下,篇幅不会很长,即使已经了解这个目录的读者也可以顺便看看回忆回忆巩固下基础也可!
它的位置位于C:\WINDOWS\Microsoft.NET\Framework\v4.0.30319\Temporary ASP.NET Files用于存放经ASP.NET引擎编译过后的页面程序集文件.(注意:v4.0.30319为.NET版本号,具体的请根据实际情况去作相应的调整!)
image
上图代码一个普通的页面代码.然后交由ASP.NET引擎处理后变成下图的程序集文件
image

4.自定义Temporary ASP.NET Files目录位置

很简单,只需修改一下web.config的配置就可以了

<system.web><compilationdebug="true"targetFramework="4.0"tempDirectory="e:\xxx\"><assemblies><addassembly="System.Web.Abstractions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /><addassembly="System.Web.Helpers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /><addassembly="System.Web.Routing, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /><addassembly="System.Web.Mvc, Version=3.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /><addassembly="System.Web.WebPages, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /></assemblies></compilation><!-- .... -->
</system.web>

image

II:将ASP.NET MVC3的应用部署到IIS 6.0

1.IIS 6.0的相关设置

其实很简单不需要像网上说的什么.mvc后缀设置映射处理程序什么的.
确保IIS 6.0能处理ASP.NET 4.0
image
然后在为具体的站点的ASP.NET版本设置为ASP.NET 4.0
image
接着设置IIS为直接走ASP.NET ISAPI
image
接着设置应用程序扩展影射
image
最后
image

2.在负载均衡下记得为每一台Web Server设置同一个MachineKey,否则将无法使视图状态正常工作.
image
本文完..祝各位中秋快乐
预编译工具, 预编译后合并工具

转载于:https://www.cnblogs.com/highend/archive/2011/09/12/aspnet_mvc3_deploy_to_iis6.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/422768.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言进阶深度学习记录】三十九 C语言中的可变参数(参数可变的函数)

用过printf()函数的热都知道&#xff0c;printf的参数可以有多个&#xff0c;它是可变的&#xff0c;根据我们输出参数的类型以及个数的不同来确定参数。今天来学习C语言中参数可变的函数是如何实现的。 文章目录1 可变参数2 总结1 可变参数 首先我们要明白一点&#xff0c;在…

Linux 安装 OpenOffice

继续弃W从L的奋斗&#xff01;哈哈 在RedHat 6 上安装 OpenOffice。 首先在官网上下载OpenOffice的软件包 100多M。软件包名为&#xff1a;OOo_3.3.0_Linux_x86_install-rpm_en-US.tar.gz 下好后开始安装软件&#xff1a;1 解压 tar xjvf OOo_3.3.0_Linux_x86_install…

【离散数学中的数据结构与算法】一 最大公约数与最小公倍数之间的关系

文章目录1 算数基本定理2 最大公约数3 最小公倍数4 性质5 推论1 算数基本定理 设正整数 n>1&#xff0c; 则 n 可唯一地表示为&#xff1a; 其中 p1<p2<,…, <ps 是 s 个相异的素数&#xff0c; 指数ki都是正整数。 此定理又称作唯一析因定理&#xff08;unique f…

Item 添加事件 list grally等

mainListView.setOnItemClickListener (new OnItemClickListener(){ public void onItemClick(AdapterView<?> parent,View v,int position,long id){ } });转载于:https://www.cnblogs.com/sode/archive/2011/09/25/2189845.html

【离散数学中的数据结构与算法】二 欧几里得算法与裴蜀等式

欧几里得算法是计算两个数最大公因子算法。又称辗转相除法。本文将学习为什么辗转相除法可以求得两个数的最大公因子。同时也可以根据最大公因子计算两个数的最小公倍数。 文章目录1 欧几里得算法的理论基础1.1 欧几里得算法&#xff08;辗转相除法&#xff09;2 裴蜀等式&…

数据库-存储过程-游标-函数

一、存储过程 SQL99标准提出的SQL-invoked-rountines的概念&#xff0c;它开分为存储过程与函数&#xff0c;这里首先介绍存储过程 存储过程分为三类&#xff1a;系统存储过程(如&#xff1a;sp_help)、自定义存储过程、扩展存储过程 存储过程可以理解为一个SQL语句块&am…

【离散数学中的数据结构与算法】四 加法法则与乘法法则

文章目录1 加法法则2 乘法法则3 例子3.1 例一3.2 例二3.3 例三4 总结1 加法法则 加法法则&#xff1a; 设事件 A 有 m 种产生方式&#xff0c; 事件 B 有n 种产生方式&#xff0c;则当 A 与 B 产生的方式不重叠时&#xff0c;“事件 A 或 B 之一” 有 mn 种产生方式。 加法法…

实现上移的存储过程

--上移存储过程 create proc sp_sort id int as declare SortID int --排序位置 declare TempSortID int --临时排序位置 declare TempID int --临时编号 begin transaction select SortIDSortID from [User] where [ID]ID --找出想修改顺序的用户的当前当前排序 select Tem…

前端学习(310):清除浮动的方法

我们经常把高度塌陷问题也叫做常见的几种清除浮动的方法 高度塌陷问题—父元素高度自适应&#xff0c;子元素float后&#xff0c;造成父元素高度为0&#xff0c;就叫做高度塌陷问题 给父元素一个高度 缺点&#xff1a;无法高度自适应 父元素{overflow:hidden;} 缺点&#xf…

【离散数学中的数据结构与算法】五 排列与组合一

在leetcode刷题过程中&#xff0c;遇到过很多关于排列组合的问题。弄清楚排列组合的相关原理&#xff0c;是非常有用处的。 文章目录1 问题2 排列-有序选取2.1 重复选取-可重排列2.2 不重复选取-排列2.21 全排列3 例题4 总结1 问题 设集合S包含n个元素&#xff0c;从S中选取r个…

Google Maps 地址转化成坐标

http请求格式http://maps.google.com/maps/geo?q查询关键字&outputkml(输出格式可以 为xml kml json)&oeutf8&sensortrue或者false&key你的apikey示例http://maps.google.com/maps/geo?q湖南大学软件学院&outputkml&keyabcdefg(api key)输出kml文件如…

【离散数学中的数据结构与算法】六 排列与组合二

接着上一篇学习&#xff1a;【离散数学中的数据结构与算法】五 排列与组合一 上一篇文章主要学习了可重复选取的可重排列和不可重复选取的排列。他们都是在n个不同的对象中选取。 今天我们俩学习的是&#xff0c;当这个n个对象中有相同的元素的时候&#xff0c;排列的相关定理…

sql 2008 使用output避免数据修改后的二次查询

表a (f1 primary key,f2,f3), 表b (f1,f3,f4)现要根据表b修改表a中的相应字段的值&#xff0c;并将修改过的值显示出来&#xff0c;一般用法&#xff1a;1 update a from b set a.f3b.f3 where a.f1b.f12 select a.f1,f2,f3 from a where a.f1 in (select f1 from b)根据sql的…

【离散数学中的数据结构与算法】七 排列与组合三

前两篇文章学习了不可重复选取的排列与可重复选取的可重排列。本篇文章开始学习组合的相关定理。 文章目录1 组合1.1 组合的计算公式2 总结1 组合 跟排列一样。组合也分为不重复选取的组合&#xff0c;与可重复选取的可重组合。本节内容主要学习不可重复选取的组合 从 n 个不…

Silverlight4.0教程之WebBrowser控件(Silverlight内置HTML浏览器控件)

微软于PDC2009上发布Silverlight 4 Beta版&#xff0c;微软在Silverlight 4版本中处理了约8000个的Silverlight终端用户的请求&#xff0c;加入了一系列另开发人员兴奋的新特性&#xff0c;最突出的主要体现在几个方面&#xff1a; 开发工具增强&#xff1a;Visual Studio 2010…

【离散数学中的数据结构与算法】八 排列与组合四

上一篇文章学习了组合&#xff08;不可重复选取的&#xff09;。今天来将可重复选取的组合学习一下。 文章目录1 可重复选取的组合-可重组合2 总结1 可重复选取的组合-可重组合 现在有4种口味的棒棒糖&#xff0c;你要从中选3个(允许你选同种口味)总共有多少种不同的选法&…

[转]HDFS用户指南(中文版)

目的 本文档可以作为使用Hadoop分布式文件系统用户的起点&#xff0c;无论是将HDFS应用在一个Hadoop集群中还是作为一个单独的分布式文件系统使用。HDFS被设计成可以马上在许多环境中工作起来&#xff0c;那么一些HDFS的运行知识肯定能大大地帮助你对一个集群做配置改进和诊断。…