题意:
给定a,b,求a*b。
思路:
a,b的长度都为50000,直接模拟计算n*m肯定超时,可以用快速傅里叶变化计算,然后再把相应的系数化简出来。
code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;const double PI=acos(-1.0);
struct complex
{double l,r;complex(double ll=0.0,double rr=0.0){l=ll;r=rr;}complex operator +(const complex& B){return complex(l+B.l,r+B.r);}complex operator - (const complex& B){return complex(l-B.l,r-B.r);}complex operator *(const complex& B){return complex(l*B.l-r*B.r,l*B.r+B.l*r);}
};/** 进行FFT和IFFT前的反转变换。* 位置i和j(i二进制反转后位置)互换* len必须是2的幂*/
void change(complex y[],int len){int i,j,k;for (int i=1,j=len/2;i<len-1;i++){if (i<j) swap(y[i],y[j]);k=len/2;while (j>=k){j-=k;k>>=1;}if (j<k) j+=k;}
}
/** 做FFT* len必须为2^k形式,* on==1时是DFT,on==-1时是IDFT*/
void fft(complex y[],int len,int on){change(y,len);for (int h=2;h<=len;h<<=1){complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));for (int j=0;j<len;j+=h){complex w(1,0);for (int k=j;k<j+h/2;k++){complex u=y[k];complex t=w*y[k+h/2];y[k]=u+t;y[k+h/2]=u-t;w=w*wn;}}}if (on==-1){for (int i=0;i<len;i++){y[i].l/=len;}}
}
const int MAXN=200010;
complex x1[MAXN],x2[MAXN];
char s1[MAXN],s2[MAXN];
int sum[MAXN];
int main()
{while (~scanf("%s%s",s1,s2)){int len1=strlen(s1);int len2=strlen(s2);int len=1;while (len<len1*2||len<len2*2) len<<=1;for (int i=0;i<len1;i++){x1[i]=complex(s1[len1-1-i]-'0',0);}for (int i=len1;i<len;i++){x1[i]=complex(0,0);}for (int i=0;i<len2;i++){x2[i]=complex(s2[len2-1-i]-'0',0);}for (int i=len2;i<len;i++) x2[i]=complex(0,0);fft(x1,len,1);fft(x2,len,1);for (int i=0;i<len;i++){x1[i]=x1[i]*x2[i];}fft(x1,len,-1);//化简和进位for (int i=0;i<len;i++){sum[i]=(int) (x1[i].l+0.5);}for(int i=0;i<len;i++){sum[i+1]+=(sum[i]/10);sum[i]%=10;}len=len1+len2-1;while (sum[len]<=0&&len>0) len--;for (int i=len;i>=0;i--){printf("%c",sum[i]+'0');}printf("\n");}
}