canoco5冗余分析步骤_打造高性能的大数据分析平台

a7f2089e98fdb710335dc18486c846b6.png

大数据时代,大数据的应用与挖掘,大数据的分析和决策,大数据在经济社会的运行轨道上发挥着愈来愈重要的作用。对于大数据分析,现在好多互联网金融公司和传统的商业银行、证券基金公司都非常看重。个个都想在大数据分析中获得重要信息,以此拓宽和巩固自己的经济业务和发展疆域。由此,一个高性能的大数据分析平台就显得极其重要,可以说,一个公司如果打造出了一个高性能的大数据平台,那么它离成功就比同行更近一步。高性能的大数据分析平台,如同充足了油的马达,一路向前狂奔,一路高歌猛进。下面,针对打造高性能的大数据分析平台的话题,给大家分享一篇文章,希望对大家有所借鉴和帮助。

如何打造高性能的大数据分析平台

大数据分析系统作为一个关键性的系统在各个公司迅速崛起,但是这种海量规模的数据带来了前所未有的性能挑战。同时,如果大数据分析系统无法在第一时间为运营决策提供关键数据,那么这样的大数据分析系统一文不值。本文将从技术无关的角度讨论一些提高性能的方法。下面我们将讨论一些能够应用在大数据分析系统不同阶段的技巧和准则(例如数据提取,数据清洗,处理,存储,以及介绍)。本文应作为一个通用准则,以确保最终的大数据分析平台能满足性能要求。

1.大数据是什么?

大数据是最近IT界最常用的术语之一。然而对大数据的定义也不尽相同,所有已知的论点例如结构化的和非结构化、大规模的数据等等都不够完整。大数据系统通常被认为具有数据的五个主要特征,通常称为数据的5 Vs。分别是大规模,多样性,高效性、准确性和价值性。

据Gartner称,大规模可以被定义为“在本(地)机数据采集和处理技术能力不足以为用户带来商业价值。当现有的技术能够针对性的进行改造后来处理这种规模的数据就可以说是一个成功的大数据解决方案。

这种大规模的数据没将不仅仅是来自于现有的数据源,同时也会来自于一些新兴的数据源,例如常规(手持、工业)设备,日志,汽车等,当然包括结构化的和非结构化的数据。

据Gartner称,多样性可以定义如下:“高度变异的信息资产,在生产和消费时不进行严格定义的包括多种形式、类型和结构的组合。同时还包括以前的历史数据,由于技术的变革历史数据同样也成为多样性数据之一 “。

高效性可以被定义为来自不同源的数据到达的速度。从各种设备,传感器和其他有组织和无组织的数据流都在不断进入IT系统。由此,实时分析和对于该数据的解释(展示)的能力也应该随之增加。

根据Gartner,高效性可以被定义如下:“高速的数据流I/O(生产和消费),但主要聚焦在一个数据集内或多个数据集之间的数据生产的速率可变上”。

准确性,或真实性或叫做精度是数据的另一个重要组成方面。要做出正确的商业决策,当务之急是在数据上进行的所有分析必须是正确和准确(精确)的。

大数据系统可以提供巨大的商业价值。像电信,金融,电子商务,社交媒体等,已经认识到他们的数据是一个潜在的巨大的商机。他们可以预测用户行为,并推荐相关产品,提供危险交易预警服务,等等。

与其他IT系统一样,性能是大数据系统获得成功的关键。本文的中心主旨是要说明如何让大数据系统保证其性能。

2.大数据系统应包含的功能模块

大数据系统应该包含的功能模块,首先是能够从多种数据源获取数据的功能,数据的预处理(例如,清洗,验证等),存储数据,数据处理、数据分析等(例如做预测分析,生成在线使用建议等等),最后呈现和可视化的总结、汇总结果。

下图描述了大数据系统的这些高层次的组件:

a2aeaca776be15b824ced9f0aa2d453e.png

2.1各种各样的数据源

当今的IT生态系统,需要对各种不同种类来源的数据进行分析。这些来源可能是从在线Web应用程序,批量上传或feed,流媒体直播数据,来自工业、手持、家居传感的任何东西等等。

显然从不同数据源获取的数据具有不同的格式、使用不同的协议。例如,在线的Web应用程序可能会使用SOAP / XML格式通过HTTP发送数据,feed可能会来自于CSV文件,其他设备则可能使用MQTT通信协议。

由于这些单独的系统的性能是不在大数据系统的控制范围之内,并且通常这些系统都是外部应用程序,由第三方供应商或团队提供并维护,所以本文将不会在深入到这些系统的性能分析中去。

2.2数据采集

第一步,获取数据。这个过程包括分析,验证,清洗,转换,去重,然后存到适合你们公司的一个持久化设备中(硬盘、存储、云等)。

在下面的章节中,本文将重点介绍一些关于如何获取数据方面的非常重要的技巧。请注意,本文将不讨论各种数据采集技术的优缺点。

2.3存储数据

第二步,一旦数据进入大数据系统,清洗,并转化为所需格式时,这些过程都将在数据存储到一个合适的持久化层中进行。

在下面的章节中,本文将介绍一些存储方面的最佳实践(包括逻辑上和物理上)。在本文结尾也会讨论一部分涉及数据安全方面的问题。

2.4数据处理和分析

第三步,在这一阶段中的一部分干净数据是去规范化的,包括对一些相关的数据集的数据进行一些排序,在规定的时间间隔内进行数据结果归集,执行机器学习算法,预测分析等。

在下面的章节中,本文将针对大数据系统性能优化介绍一些进行数据处理和分析的最佳实践。

2.5数据的可视化和数据展示

最后一个步骤,展示经过各个不同分析算法处理过的数据结果。该步骤包括从预先计算汇总的结果(或其他类似数据集)中的读取和用一种友好界面或者表格(图表等等)的形式展示出来。这样便于对于数据分析结果的理解。

3.数据采集中的性能技巧

数据采集是各种来自不同数据源的数据进入大数据系统的第一步。这个步骤的性能将会直接决定在一个给定的时间段内大数据系统能够处理的数据量的能力。

数据采集过程基于对该系统的个性化需求,但一些常用执行的步骤是 – 解析传入数据,做必要的验证,数据清晰,例如数据去重,转换格式,并将其存储到某种持久层。

涉及数据采集过程的逻辑步骤示如下图所示:

a971611bb13df8f750ce8d2172c2e0be.png

下面是一些性能方面的技巧:

●来自不同数据源的传输应该是异步的。可以使用文件来传输、或者使用面向消息的(MoM)中间件来实现。由于数据异步传输,所以数据采集过程的吞吐量可以大大高于大数据系统的处理能力。 异步数据传输同样可以在大数据系统和不同的数据源之间进行解耦。大数据基础架构设计使得其很容易进行动态伸缩,数据采集的峰值流量对于大数据系统来说算是安全的。

●如果数据是直接从一些外部数据库中抽取的,确保拉取数据是使用批量的方式。

●如果数据是从feed file解析,请务必使用合适的解析器。例如,如果从一个XML文件中读取也有不同的解析器像JDOM,SAX,DOM等。类似地,对于CSV,JSON和其它这样的格式,多个解析器和API是可供选择。选择能够符合需求的性能最好的。

●优先使用内置的验证解决方案。大多数解析/验证工作流程的通常运行在服务器环境(ESB /应用服务器)中。大部分的场景基本上都有现成的标准校验工具。在大多数的情况下,这些标准的现成的工具一般来说要比你自己开发的工具性能要好很多。

●类似地,如果数据XML格式的,优先使用XML(XSD)用于验证。

●即使解析器或者校等流程使用自定义的脚本来完成,例如使用java优先还是应该使用内置的函数库或者开发框架。在大多数的情况下通常会比你开发任何自定义代码快得多。

●尽量提前滤掉无效数据,以便后续的处理流程都不用在无效数据上浪费过多的计算能力。

●大多数系统处理无效数据的做法通常是存放在一个专门的表中,请在系统建设之初考虑这部分的数据库存储和其他额外的存储开销。

●如果来自数据源的数据需要清洗,例如去掉一些不需要的信息,尽量保持所有数据源的抽取程序版本一致,确保一次处理的是一个大批量的数据,而不是一条记录一条记录的来处理。一般来说数据清洗需要进行表关联。数据清洗中需要用到的静态数据关联一次,并且一次处理一个很大的批量就能够大幅提高数据处理效率。

●数据去重非常重要这个过程决定了主键的是由哪些字段构成。通常主键都是时间戳或者id等可以追加的类型。一般情况下,每条记录都可能根据主键进行索引来更新,所以最好能够让主键简单一些,以保证在更新的时候检索的性能。

●来自多个源接收的数据可以是不同的格式。有时,需要进行数据移植,使接收到的数据从多种格式转化成一种或一组标准格式。

●和解析过程一样,我们建议使用内置的工具,相比于你自己从零开发的工具性能会提高很多。

●数据移植的过程一般是数据处理过程中最复杂、最紧急、消耗资源最多的一步。因此,确保在这一过程中尽可能多的使用并行计算。

●一旦所有的数据采集的上述活动完成后,转换后的数据通常存储在某些持久层,以便以后分析处理,综述,聚合等使用。

●多种技术解决方案的存在是为了处理这种持久(RDBMS,NoSQL的分布式文件系统,如Hadoop和等)。

●谨慎选择一个能够最大限度的满足需求的解决方案。

3951a503af8054725e44456e4e106cf0.png

4.数据存储中的性能技巧

一旦所有的数据采集步骤完成后,数据将进入持久层。

在本节中将讨论一些与数据数据存储性能相关的技巧包括物理存储优化和逻辑存储结构(数据模型)。这些技巧适用于所有的数据处理过程,无论是一些解析函数生的或最终输出的数据还是预计算的汇总数据等。

●首先选择数据范式。您对数据的建模方式对性能有直接的影响,例如像数据冗余,磁盘存储容量等方面。对于一些简单的文件导入数据库中的场景,你也许需要保持数据原始的格式,对于另外一些场景,如执行一些分析计算聚集等,你可能不需要将数据范式化。

●大多数的大数据系统使用NoSQL数据库替代RDBMS处理数据。

●不同的NoSQL数据库适用不同的场景,一部分在select时性能更好,有些是在插入或者更新性能更好。

●数据库分为行存储和列存储。

●具体的数据库选型依赖于你的具体需求(例如,你的应用程序的数据库读写比)。

●同样每个数据库都会根据不同的配置从而控制这些数据库用于数据库复制备份或者严格保持数据一致性。

●这些设置会直接影响数据库性能。在数据库技术选型前一定要注意。

●压缩率、缓冲池、超时的大小,和缓存的对于不同的NoSQL数据库来说配置都是不同的,同时对数据库性能的影响也是不一样的。

●数据Sharding和分区是这些数据库的另一个非常重要的功能。数据Sharding的方式能够对系统的性能产生巨大的影响,所以在数据Sharding和分区时请谨慎选择。

●并非所有的NoSQL数据库都内置了支持连接,排序,汇总,过滤器,索引等。

●如果有需要还是建议使用内置的类似功能,因为自己开发的还是不灵。

●NoSQLs内置了压缩、编解码器和数据移植工具。如果这些可以满足您的部分需求,那么优先选择使用这些内置的功能。这些工具可以执行各种各样的任务,如格式转换、压缩数据等,使用内置的工具不仅能够带来更好的性能还可以降低网络的使用率。

●许多NoSQL数据库支持多种类型的文件系统。其中包括本地文件系统,分布式文件系统,甚至基于云的存储解决方案。

●如果在交互式需求上有严格的要求,否则还是尽量尝试使用NoSQL本地(内置)文件系统(例如HBase 使用HDFS)。

●这是因为,如果使用一些外部文件系统/格式,则需要对数据进行相应的编解码/数据移植。它将在整个读/写过程中增加原本不必要的冗余处理。

●大数据系统的数据模型一般来说需要根据需求用例来综合设计。与此形成鲜明对比的是RDMBS数据建模技术基本都是设计成为一个通用的模型,用外键和表之间的关系用来描述数据实体与现实世界之间的交互。

●在硬件一级,本地RAID模式也许不太适用。请考虑使用SAN存储。

5.数据处理分析中的性能技巧

数据处理和分析是一个大数据系统的核心。像聚合,预测,聚集,和其它这样的逻辑操作都需要在这一步完成。

本节讨论一些数据处理性能方面的技巧。需要注意的是大数据系统架构有两个组成部分,实时数据流处理和批量数据处理。本节涵盖数据处理的各个方面。

●在细节评估和数据格式和模型后选择适当的数据处理框架。

●其中一些框架适用于批量数据处理,而另外一些适用于实时数据处理。

●同样一些框架使用内存模式,另外一些是基于磁盘io处理模式。

●有些框架擅长高度并行计算,这样能够大大提高数据效率。

●基于内存的框架性能明显优于基于磁盘io的框架,但是同时成本也可想而知。

●概括地说,当务之急是选择一个能够满足需求的框架。否则就有可能既无法满足功能需求也无法满足非功能需求,当然也包括性能需求。

●一些这些框架将数据划分成较小的块。这些小数据块由各个作业独立处理。协调器管理所有这些独立的子作业

●在数据分块是需要当心。

●该数据快越小,就会产生越多的作业,这样就会增加系统初始化作业和清理作业的负担。

●如果数据快太大,数据传输可能需要很长时间才能完成。这也可能导致资源利用不均衡,长时间在一台服务器上运行一个大作业,而其他服务器就会等待。

●不要忘了查看一个任务的作业总数。在必要时调整这个参数。

●最好实时监控数据块的传输。在本机机型io的效率会更高,这么做也会带来一个副作用就是需要将数据块的冗余参数提高(一般hadoop默认是3份)这样又会反作用使得系统性能下降。

62048ad248dce15754801f8d8ae532a4.png

●此外,实时数据流需要与批量数据处理的结果进行合并。设计系统时尽量减少对其他作业的影响。

●大多数情况下同一数据集需要经过多次计算。这种情况可能是由于数据抓取等初始步骤就有报错,或者某些业务流程发生变化,值得一提的是旧数据也是如此。设计系统时需要注意这个地方的容错。

●这意味着你可能需要存储原始数据的时间较长,因此需要更多的存储。

●数据结果输出后应该保存成用户期望看到的格式。例如,如果最终的结果是用户要求按照每周的时间序列汇总输出,那么你就要将结果以周为单位进行汇总保存。

●为了达到这个目标,大数据系统的数据库建模就要在满足用例的前提下进行。例如,大数据系统经常会输出一些结构化的数据表,这样在展示输出上就有很大的优势。

●更常见的是,这可能会这将会让用户感觉到性能问题。例如用户只需要上周的数据汇总结果,如果在数据规模较大的时候按照每周来汇总数据,这样就会大大降低数据处理能力。

●一些框架提供了大数据查询懒评价功能。在数据没有在其他地方被使用时效果不错。

●实时监控系统的性能,这样能够帮助你预估作业的完成时间。

6.数据可视化和展示中的性能技巧

精心设计的高性能大数据系统通过对数据的深入分析,能够提供有价值战略指导。这就是可视化的用武之地。良好的可视化帮助用户获取数据的多维度透视视图。

需要注意的是传统的BI和报告工具,或用于构建自定义报表系统无法大规模扩展满足大数据系统的可视化需求。同时,许多COTS可视化工具现已上市。

本文将不会对这些个别工具如何进行调节,而是聚焦在一些通用的技术,帮助您能打造可视化层。

●确保可视化层显示的数据都是从最后的汇总输出表中取得的数据。这些总结表可以根据时间短进行汇总,建议使用分类或者用例进行汇总。这么做可以避免直接从可视化层读取整个原始数据。

●这不仅最大限度地减少数据传输,而且当用户在线查看在报告时还有助于避免性能卡顿问题。

●重分利用大化可视化工具的缓存。缓存可以对可视化层的整体性能产生非常不错的影响。

●物化视图是可以提高性能的另一个重要的技术。

●大部分可视化工具允许通过增加线程数来提高请求响应的速度。如果资源足够、访问量较大那么这是提高系统性能的好办法。

●尽量提前将数据进行预处理,如果一些数据必须在运行时计算请将运行时计算简化到最小。

●可视化工具可以按照各种各样的展示方法对应不同的读取策略。其中一些是离线模式、提取模式或者在线连接模式。每种服务模式都是针对不同场景设计的。

●同样,一些工具可以进行增量数据同步。这最大限度地减少了数据传输,并将整个可视化过程固化下来。

●保持像图形,图表等使用最小的尺寸。

●大多数可视化框架和工具的使用可缩放矢量图形(SVG)。使用SVG复杂的布局可能会产生严重的性能影响。

7.数据安全以及对于性能的影响

像任何IT系统一样安全性要求也对大数据系统的性能有很大的影响。在本节中,我们讨论一下安全对大数据平台性能的影响。

– 首先确保所有的数据源都是经过认证的。即使所有的数据源都是安全的,并且没有针对安全方面的需求,那么你可以灵活设计一个安全模块来配置实现。

– 数据进过一次认证,那么就不要进行二次认证。如果实在需要进行二次认证,那么使用一些类似于token的技术保存下来以便后续继续使用。这将节省数据一遍遍认证的开销。

– 您可能需要支持其他的认证方式,例如基于PKI解决方案或Kerberos。每一个都有不同的性能指标,在最终方案确定前需要将其考虑进去。

– 通常情况下数据压缩后进入大数据处理系统。这么做好处非常明显不细说。

– 针对不同算法的效率、对cpu的使用量你需要进行比较来选出一个传输量、cpu使用量等方面均衡的压缩算法。

– 同样,评估加密逻辑和算法,然后再选择。

– 明智的做法是敏感信息始终进行限制。

– 在审计跟踪表或登录时您可能需要维护记录或类似的访问,更新等不同的活动记录。这可能需要根据不同的监管策略和用户需求个性化的进行设计和修改。

– 注意,这种需求不仅增加了数据处理的复杂度,但会增加存储成本。

– 尽量使用下层提供的安全技术,例如操作系统、数据库等。这些安全解决方案会比你自己设计开发性能要好很多。

8.总结

本文介绍了各种性能方面的技巧,这些技术性的知道可以作为打造大数据分析平台的一般准则。大数据分析平台非常复杂,为了满足这种类型系统的性能需求,需要我们从开始建设的时候进行考量。

本文介绍的技术准则可以用在大数据平台建设的各个不同阶段,包括安全如何影响大数据分析平台的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/339136.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C 迭代器iterator的实现原理

在经典的设计模式中,有一种迭代器模式,定义为:提供一个对象来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示。迭代器的主要优点如下:访问一个聚合对象的内容而无须暴露它的内部表示。遍历任务交由迭代器…

html如何在画布上加层,在Canvas中嵌套Html

大概是这样的,现在需要根据一下上传的图片以及一些输入生成图片。本来打算用imagemagick的,但是后来觉得这样前后端要搞两份不同的代码,然后imagemagick使用起来远没有canvas用起来顺手啊。So,最终决定就用Canvas搞定它了&#xf…

如何用illustrator做技术手册_做期货用什么技术指标分析?

来源:期汇股金作者:DC链接:做期货用什么技术指标分析?投资期货市场首先我们要有一套自己的技术分析,那么我们有什么样的技术指标分析最准确呢,没有最准确的技术指标,要看你运用的程度&#xff0…

根据字符串自动构造对应类

问题的起因是,我在做一个demo,有一个对象基类,以及一堆派生出的子对象,比如球体、立方体之类的对象。还有一个对象管理类,用于存储场景中的所有对象。那么在初始化的时候,代码是这么写的:class …

openshift k8s_带有DIY的Openshift上的Spring Boot / Java 8 / Tomcat 8

openshift k8sDIY盒带是一种实验性盒带,提供了一种在OpenShift上测试不受支持的语言的方法。 它提供了最小限度的自由形式的支架,将墨盒的所有细节留给了应用程序开发人员 。 这篇博客文章说明了结合了PostgreSQL服务的Spring Boot / Java 8 / Tomcat 8应…

都兰县第一中学计算机,都兰县第一中学教案.doc

PAGE \* MERGEFORMATPAGE \* MERGEFORMAT 1都兰县第一中学教案班级初一.班周次9时间45分钟课时2授课教师席得勋教学内容篮球:胸前双手传接球器 材篮球25个、栏架4个、垫子4个、长凳4个、标志桶4个教学目标运动参与目标:通过学习激发学生兴趣,使学生积极参…

.sql文件如何执行_mysql:一条SQL查询语句是如何执行的?

本篇文章将通过一条 SQL 的执行过程来介绍 MySQL 的基础架构。首先有一个 user_info 表,表里有一个 id 字段,执行下面这条查询语句:select * from user_info where id 1;返回结果为:-------------------------------------------…

jooq和jdbc_在jOOQ之上构建的RESTful JDBC HTTP服务器

jooq和jdbcjOOQ生态系统和社区正在持续增长。 我们个人总是很高兴看到基于jOOQ构建的其他开源项目。 今天,我们非常高兴为您介绍BjrnHarrtell结合REST和RDBMS的一种非常有趣的方法。 BjrnHarrtell从小就是瑞典的程序员。 他通常在Sweco Position AB上忙于编写GIS系…

C 虚函数表及多态内部原理详解

C 中的虚函数的作用主要是实现了多态的机制。关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数。这种技术可以让父类的指针有“多种形态”,这是一种泛型技术。虚函数表每个含有虚函数的类都…

html代码编辑器sp,在线HTML编译,文本关键字高亮显示,富文本编辑实现大概思路...

????最近被安排做了一个HTML在线编译功能,也利用这个机会对HTML在线编译,关键字高亮,富文本编辑器等的实现做了一些比较表面的研究,做简要记录,以便再次遇到作为参考。????在线HTML编译????首先需要一个能…

numpy 平方_NumPy入门指南

本文介绍了NumPy的基础知识,NumPy是使用Python进行科学计算的软件包。我们将在此处介绍几类基本的数组操作: 创建NumPy数组 重塑数组 NumPy的数学运算 数组的索引和切片 遍历数组首先,让我们将NumPy导入为np。 这使我们可以使用快捷方式np来引…

android 揭示动画_揭示垃圾收集暂停的时间长度

android 揭示动画有几种方法可以改善您的产品。 一种这样的方法是仔细跟踪用户的体验并在此基础上进行改进。 我们确实自己应用了此技术,并再次花了一些时间查看不同的数据 除了我们追求的许多其他方面之外,我们还提出了一个问题“延迟GC触发应用程序的…

10 张程序员喜爱的壁纸,需要自取~

喜欢的话就请点个再看,分享到朋友圈吧~

iptables 开放远程_JavaWeb项目的部署以及远程调试

不点蓝字,我们哪来故事?Linux环境下软件的安装Linux环境下的程序的安装、更新、卸载和查看。rpm 命令:相当于windows程序的添加/卸载程序,进程程序的安装,查看,卸载。本地程序安装:rpm -ivh 程序…

计算机网络应用基础论文,计算机网络应用基础概述论文

如今计算机网络技术应用的范围比较普遍,已经渗透到了人们工作和生活的各个方面。计算机网络的应用代表着社会进入了一个全新的时代,是生产力发展到一定阶段的产物。下面是答.案.网 ZQNf.Com小编给大家推荐的计算机网络应用基础概述论文,希望大…

java 性能调优_Java性能调优调查结果(第一部分)

java 性能调优我们在2014年10月进行了Java性能调优调查。该调查的主要目的是收集对Java性能世界的见解,以改善Plumbr产品。 但是,我们也很高兴与您分享有趣的结果。 我们收集的数据为进行冗长的分析提供了素材,因此我们决定将结果划分为一系列…

wps生成正态分布的随机数_量子计算与机器学习: 量子生成对抗网络QGAN

随着量子信息和量子计算的快速发展(经费多了),科研工作者们一边感叹着量子计算机时代即将拥有的强大计算能力,一边又在考虑着如何将现有的高效算法和量子计算机相适配。作为最近几年如此火爆的机器学习,也就自然而然地…

通过反汇编来理解restrict关键字

一次难忘的面试经历多年前,一次互联网某厂实习生的面试题,题目的代码片段很简单,如下:1 #include 2 int main()3 {4 int *restrict pInt (int*)malloc(4);5 int *pNewInt pInt;6 return 0;7 } 12345678面试官问…

python车牌识别系统开源代码_汽车牌照识别系统【YOLO+MLP】

车牌识别系统可以自动检测并识别图像中的车辆牌照,其算法主要包括牌照定位、牌照分割、字符识别等步骤。本文将给出一种基于深度学习的车牌识别系统方案。要快速掌握开发人工智能系统的技能,推荐汇智网的 机器学习系列在线课程由于可以自动地从视频图像中…

幻灯片演示什么模式最好_清洁单元测试图案–演示幻灯片

幻灯片演示什么模式最好我有机会在2014年GDG DevFestKarlsruhe会议上谈论“清洁单元测试模式”。 感谢组织者邀请我,也感谢所有听我讲话的人。 如所承诺的,我为那些想看一下我在演讲中没有讲过的其他幻灯片的人分享了演示文稿: 清洁单元测试…