P4735 最大异或和

P4735 最大异或和

题意:

一个非负序列a,初始长度为n,有两种操作:

  1. A x,在序列中添加x,n加一
  2. Q l r x,询问操作,询问一个位置p,p满足l<=p<=r,使得p到位置n的的异或和与x的异或值最大,输出最大值

题解:

我们来看这个查询操作,p∈[l,r],我们设整个区间的异或值为tot,
a[p]⊕a[p+1]⊕.....a[N]a[p] ⊕ a[p+1] ⊕ .....a[N]a[p]a[p+1].....a[N]=tot⊕(a[1]⊕a[2].....⊕a[p−1])tot ⊕ (a[1] ⊕ a[2].....⊕a[p-1])tot(a[1]a[2].....a[p1])
相当于我们巧妙的将后缀问题转换成前缀问题,那就是找一个前缀s[y]⊕(x⊕tot)的值最大,y属于[l-1,r-1]。转化成可持久化01Trie经典模型:
给定(l,r,x),在序列[l,r]区间中选一个数a[i],使得a[i]⊕x最大
然后按照可持久化的套路,我们将所有前缀异或和s[i]建立可持久化01Trie,算出(x⊕tot)的值后在rt[l-2]到rt[r-1]这两颗树上走一边,寻找最大值

代码:

#include<bits/stdc++.h>
#define debug(a,b) printf("%s = %d\n",a,b);
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
//Fe~Jozky
const ll INF_ll=1e18;
const int INF_int=0x3f3f3f3f;
inline ll read(){ll s=0,w=1ll;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')w=-1ll;ch=getchar();}while(ch>='0'&&ch<='9') s=s*10ll+((ch-'0')*1ll),ch=getchar();//s=(s<<3)+(s<<1)+(ch^48);return s*w;
}
void rd_txt(){#ifdef ONLINE_JUDGE#elsefreopen("in.txt","r",stdin);#endif
}
const int maxn=6e5+9;
struct tree{int cnt;int ch[2];
}tr[maxn*30];
int rtnum=0;
int a[maxn];
int rt[maxn];
int tot=0;
void insert(int now,int pre,int x){for(int i=30;i>=0;i--){int c=((x>>i)&1);tr[now].ch[c^1]=tr[pre].ch[c^1];tr[now].ch[c]=++rtnum;now=tr[now].ch[c];pre=tr[pre].ch[c];tr[now].cnt=tr[pre].cnt+1;}
}
int get(int L,int R,int x){int sum=0;for(int i=30;i>=0;i--){int c=((x>>i)&1);if(tr[tr[R].ch[c^1]].cnt>tr[tr[L].ch[c^1]].cnt){sum+=(1<<i);L=tr[L].ch[c^1];R=tr[R].ch[c^1]; }else {L=tr[L].ch[c];R=tr[R].ch[c]; }}return sum;
}int main()
{rd_txt();int n,m;cin>>n>>m;rt[0]=++rtnum;insert(rt[0],0,0);tot=0;for(int i=1;i<=n;i++){cin>>a[i];tot^=a[i];rt[i]=++rtnum;insert(rt[i],rt[i-1],tot);}for(int i=1;i<=m;i++){string op;cin>>op;int x;if(op=="A"){cin>>x;tot^=x;rt[++n]=++rtnum;insert(rt[n],rt[n-1],tot);}else if(op=="Q"){int l,r,x;cin>>l>>r>>x;l--;r--;if(l==0)printf("%d\n",get(0,rt[r],tot^x));else printf("%d\n",get(rt[l-1],rt[r],tot^x));}}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316540.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[学习笔记] 单位根反演

单位根反演 [k∣n]1k∑i0k−1ωkin[k\mid n]\frac 1k\sum_{i0}^{k-1}\omega_k^{in}[k∣n]k1​∑i0k−1​ωkin​ kkk 次单位根是 kkk 次幂为 111 的复数解 wkw_kwk​。利用单位圆和单位根的关系很容易证明。 k∣nk\mid nk∣n 显然 ωkin\omega_k^{in}ωkin​&#xff0c;相当于…

NET Core微服务之路:再谈分布式系统中一致性问题分析

前言一致性&#xff1a;很多时候表现在IT系统中&#xff0c;通常在分布式系统中&#xff0c;必须&#xff08;或最终&#xff09;为多个节点的数据保持一致。世间万物&#xff0c;也有存在相同的特征或相似&#xff0c;比如儿时的双胞胎&#xff0c;一批工厂流水线的产品&#…

P4592 [TJOI2018]异或

P4592 [TJOI2018]异或 题意&#xff1a; 现在有一颗以 1 为根节点的由 n 个节点组成的树&#xff0c;节点从 1 至 n 编号。树上每个节点上都有一个权值 vi。现在有 q 次操作&#xff0c;操作如下&#xff1a; 1 x z&#xff1a;查询节点 x 的子树中的节点权值与 z 异或结果的…

[HAOI2018] 染色(二项式反演+NTT)

洛谷链接 显然颜色数量不会超过 lim⁡min⁡(m,ns)\lim\min(m,\frac ns)limmin(m,sn​) fi:f_i:fi​: 至少有 iii 种颜色恰好出现了 sss 次的方案数。 则 fi(mi)⋅n!(s!)i(n−is)!⋅(m−i)n−isf_i\binom mi\frac{n!}{(s!)^i(n-is)!}(m-i)^{n-is}fi​(im​)⋅(s!)i(n−is)!n!​…

使用 Nexus3镜像搭设私有仓库(Bower 、Docker、Maven、npm、NuGet、Yum、PyPI)

Docker - 使用 Nexus3 搭设私有 NuGet 仓库Nexus 默认帐号Repositories上传组件包(Package)Repositories 说明准备 Package上传 Package使用 Package拉取 Nexus 镜像运行 NexusNuGetNexus 私有仓库前言说明安装Nexus NuGet 仓库简单使用总结前言NuGetNuget 是免费、开源的包管理…

P3293 [SCOI2016]美味

P3293 [SCOI2016]美味 题意&#xff1a; 有n个数组a&#xff0c;现在有m个询问&#xff0c;每次给出一个b和x&#xff0c;问b xor (a[i] x)的最大值是多少&#xff1f; 题解&#xff1a; 不难看出01Trie的题目 我们设ansa[i]x,我们想要b xor ans的最大值&#xff0c;这个很…

[HNOIAHOI2018] 转盘(线段树维护单调栈)

problem 洛谷链接 solution 结论&#xff1a;最优方案中一定有一种是全程不停的。 断环成链&#xff0c;接一个 [1,n][1,n][1,n] 在后面形成 2n2n2n 的序列&#xff0c;同时将时间戳逆过来。 转化成&#xff1a;在 ttt 时刻从某个位置 i∈[n,2n)i\in[n,2n)i∈[n,2n) 开始往…

P2446 [SDOI2010]大陆争霸

P2446 [SDOI2010]大陆争霸 题意&#xff1a; n个点&#xff0c;m个边&#xff0c;wi为每个边的边权&#xff0c;对于每个点i&#xff0c;其被l个点保护着&#xff0c;也就是如果保护其的点没有被破坏&#xff0c;点i无法被破坏(也无法经过其前往其他点)。现在从1出兵(无限数量…

EF Core 小坑:DbContextPool 会引起数据库连接池连接耗尽

DbContextPool 是 ASP.NET Core 2.1 引入的新特性&#xff0c;可以节省创建 DbContext 实例的开销&#xff0c;但没有想到其中藏着一个小坑。最近有一个 ASP.NET Core 项目持续运行一段时间后日志中就会出现数据库连接池达到最大连接数限制的错误&#xff1a;System.InvalidOpe…

AtCoder4505 [AGC029F] Construction of a tree(二分图+网络流+dfs+构造)

problem 洛谷链接 solution 考虑 Ω{E1,...,En−1}\Omega\{E_1,...,E_{n-1}\}Ω{E1​,...,En−1​} 的一个子集 SSS&#xff0c;记 f(S){u∣u∈Ei∈S}f(S)\{u\mid u\in E_i\in S\}f(S){u∣u∈Ei​∈S}。 显然当 S≠∅∧∣f(S)∣≤∣S∣S\ne\empty\wedge\big|f(S)\big|\le |…

P2447 [SDOI2010]外星千足虫

P2447 [SDOI2010]外星千足虫 题意&#xff1a; 有n个未知数 给你一个m行n1列的式子&#xff0c;对于每行&#xff0c;1到n列为这个n个未知数的系数&#xff0c;第n1列为该行式子的和mod2&#xff0c;问n个未知数是否有唯一解&#xff0c;并输出&#xff0c;并输出最少需要前k…

Kubernetes架构为什么是这样的?

小编序&#xff1a;在上周发布的《从“鸿沟理论”看云原生&#xff0c;哪些技术能够跨越鸿沟&#xff1f;》一文中&#xff0c;灵雀云CTO陈恺表示&#xff1a;Kubernetes在云计算领域已经成为既定标准&#xff0c;进入主流市场&#xff0c;最新版本主要关注在稳定性、可扩展性方…

AtCoder4380 [AGC027F] Grafting(拓扑排序)

problem 洛谷链接 solution 首先特判掉两棵树一开始就相同的情况。 那么接下来就是一定要操作才能相同的情况了。 群龙无首不行&#xff0c;我们先定根。不妨枚举第一步的叶子操作&#xff0c;即枚举叶子以及其接的点。 然后对于 A,BA,BA,B 都以这个叶子为根&#xff0c;…

开源 , KoobooJson一款高性能且轻量的JSON框架

在C#领域&#xff0c;有很多成熟的开源JSON框架&#xff0c;其中最著名且使用最多的是 Newtonsoft.Json ,然而因为版本迭代,其代码要兼容从net2.0到现在的最新的net框架,并且要支持.net平台下的其它语言,所以最新发布版本的Newtonsoft.Json其dll大小接近700k,另一方面,因为其复…

高斯消元模板

高斯消元通用 #include<stdio.h> #include<algorithm> #include<iostream> #include<string.h> #include<math.h> using namespace std;const int MAXN50;int a[MAXN][MAXN];//增广矩阵 int x[MAXN];//解集 bool free_x[MAXN];//标记是否是不确…

[CodeForces gym 102956 D] Bank Security Unification(位运算优化dp)

problem cf链接 solution 读完题先直接暴力 dpdpdp 拿出来&#xff0c;dpimax⁡j<i{dpj(fi&fj)}dp_i\max_{j<i}\big\{dp_{j}(f_i\&f_j)\big\}dpi​maxj<i​{dpj​(fi​&fj​)}。 谁能优化谁就是爸爸 假设存在 j<k<ij<k<ij<k<i&…

P2403 [SDOI2010]所驼门王的宝藏

P2403 [SDOI2010]所驼门王的宝藏 题意&#xff1a; R * C的地图上有n个宝藏&#xff0c;给你n个宝藏的坐标&#xff0c;每个宝藏的位置上还有一个传送门&#xff0c;传送门有三种类型&#xff0c;1.可以传送到同行的其他宝藏位置&#xff0c;2.可以传送到同列的其他宝藏位置 …

分布式系统的构建原则

什么是构建一个可维护和可扩展的系统的意义&#xff1f;在早期&#xff0c;一个系统的形态&#xff0c;只是满足用户和服务器资源之间的通道&#xff0c;唯一要扩展和维护的是系统后面的资源&#xff0c;保证资源的可用和够用&#xff0c;而系统本身的压力并不大。系统设计跟我…

[HEOI2016TJOI2016]排序(二分+线段树)

problem 洛谷链接 solution 在一个丝毫没有单调性的问题中很难想到将其转化为二分。 二分最后在第 ppp 位置上的值 xxx。 然后将所有 ≥x\ge x≥x 的赋为 111&#xff0c;所有 <x<x<x 的赋为 000。 经过一系列区间排序操作后&#xff0c;最后我们只在乎第 ppp 位…

可持久化4--可持久化并查集

可持久化并查集 可持久化并查集 按秩合并并查集 可持久化数组 首先并查集不能采用路径压缩&#xff0c;这是因为一次findR操作中&#xff0c;fa数组的很多位置&#xff08;u->ru&#xff09;会发生修改&#xff0c;由于每次修改都需要在可持久化数组上复制产生log个新结…