深度学习YOLOv5车辆颜色识别检测 - python opencv 计算机竞赛

文章目录

  • 1 前言
  • 2 实现效果
  • 3 CNN卷积神经网络
  • 4 Yolov5
  • 6 数据集处理及模型训练
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习YOLOv5车辆颜色识别检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 实现效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 CNN卷积神经网络

卷积神经网络(CNN),是由多层卷积结构组成的一种神经网络。卷积结构可以减少网络的内存占用、参数和模型的过拟合。卷积神经网络是一种典型的深度学习算法。广泛应用于视觉处理和人工智能领域,特别是在图像识别和人脸识别领域。与完全连接的神经网络相比,CNN输入是通过交换参数和局部感知来提取图像特征的图像。卷积神经网络是由输入层、卷积层、池化层、全连接层和输出层五层结构组成。其具体模型如下图所示。
在这里插入图片描述

(1)输入层(Input
layer):输入层就是神经网络的输入端口,就是把输入传入的入口。通常传入的图像的R,G,B三个通道的数据。数据的输入一般是多维的矩阵向量,其中矩阵中的数值代表的是图像对应位置的像素点的值。

(2)卷积层(Convolution layer):卷积层在CNN中主要具有学习功能,它主要提取输入的数据的特征值。

(3)池化层(Pooling
layer):池化层通过对卷积层的特征值进行压缩来获得自己的特征值,减小特征值的矩阵的维度,减小网络计算量,加速收敛速度可以有效避免过拟合问题。

(4)全连接层(Full connected
layer):全连接层主要实现是把经过卷积层和池化层处理的数据进行集合在一起,形成一个或者多个的全连接层,该层在CNN的功能主要是实现高阶推理计算。

(5)输出层(Output layer):输出层在全连接层之后,是整个神经网络的输出端口即把处理分析后的数据进行输出。

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

4 Yolov5

简介

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
    

6 数据集处理及模型训练

数据集准备

由于目前汽车颜色图片并没有现成的数据集,我们使用Python爬虫利用关键字在互联网上获得的图片数据,编写程序爬了1w张,筛选后用于训练。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述
后续课查看其他标注教程,不难。

开始训练模型

处理好数据集和准备完yaml文件,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数
在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/145293.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux高级篇基础理论一(详细文档、Apache,网站,MySQL、MySQL备份工具)

♥️作者:小刘在C站 ♥️个人主页: 小刘主页 ♥️不能因为人生的道路坎坷,就使自己的身躯变得弯曲;不能因为生活的历程漫长,就使求索的 脚步迟缓。 ♥️学习两年总结出的运维经验,以及思科模拟器全套网络实验教程。专栏:云计算技…

【笔记 Pytorch】稀疏矩阵、scipy.sparse模块的使用

安装:pip install scipy 描述:就是专门为了解决稀疏矩阵而生。导入模块:from scipy import sparse 优缺点总结 七种矩阵类型描述coo_matrix ★【名称】coordinate format 【优点】    ① 不同稀疏格式间转换效率高(特别是CSR和CSC)  …

如何打包成一个可安装的Android应用程序包

在Android安卓开发中,打包APK通常是指将你的应用程序代码和资源打包成一个可安装的Android安卓应用程序包。以下是打包APK的基本步骤: 配置项目:在Android Studio中,打开你的项目,确保已经配置了正确的项目名称、包名…

读取PDF中指定数据写入EXCEL文件

使用Java读取文件夹中的PDF文件,再读取文件中的指定的字体内容,然后将内容写入到Excel文件中,其中包含一些正则判断,可以忽略,字体以Corbel字体为例。 所需要的maven依赖为: <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel…

VS2022升级之后,原有项目出现异常

最近对VS2022做了升级&#xff0c;发现之前开发的WebApi&#xff08;使用Net5&#xff09;调试运行报错&#xff1a; 根据提示的错误信息也在网上查找了一些资料&#xff0c;均无法正常解决&#xff0c;偶然发现问题是因为VS2022升级之后&#xff0c;不再支持Net5&#xff0c;…

【开源】基于Vue和SpringBoot的固始鹅块销售系统

项目编号&#xff1a; S 060 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S060&#xff0c;文末获取源码。} 项目编号&#xff1a;S060&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 鹅块类型模块2.3 固…

论文技巧2

目录 1 找基准模型2 找模块小论文的三个实验怎么做对比试验Sota的挑选对⽐论⽂结果的获取3 消融实验什么是消融实验怎么做消融实验4 实例分析怎么做实例分析小论文必备三张图1 找基准模型 2 找模块 小论文的三个实验 怎么做对比试验

前端项目--命名规范

1. 文件命名&#xff1a; 项目命名&#xff1a;以小写字母命名&#xff0c;中划线分割。如my-project。 目录命名&#xff1a;以小驼峰命名法&#xff0c;除第一个单词之外&#xff0c;其他单词首字母大写。如myDir。JS/TS 文件&#xff1a;以小写字母命名&#xff0c;多个单词…

高性能音乐流媒体服务Diosic

什么是 Diosic ? Diosic 是一个开源的基于网络的音乐收集服务器和流媒体。主要适合需要部署在硬件规格不高的服务器上的用户。Diosic 是使用 Rust 开发的&#xff0c;具有低内存使用率和高性能以及用于流媒体音乐的非常干净的界面。 安装 在群晖上以 Docker 方式安装。 在注…

基于JavaWeb+SpringBoot+Vue医疗器械商城微信小程序系统的设计和实现

基于JavaWebSpringBootVue医疗器械商城微信小程序系统的设计和实现 源码获取入口前言主要技术系统设计功能截图Lun文目录订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 前言 摘 要 目前医疗器械行业作为医药行业的一个分支&#xff0c;发展十分迅速。…

ceph集群移除物理节点

1. 概述 ceph分布式存储在生产或者实验环境&#xff0c;经常涉及到物理节点加入或者删除&#xff0c;本文仅对移除物理节点的相关步骤做了操作记录&#xff0c;以方便需要时查阅。 2. 移除物理节点 2.1 out掉相应osd 操作之前通过ceph -s确保整个集群状态是OK的&#xff0c;…

Sql Prompt 10下载安装图文教程

在操作过程中&#xff0c;请暂时关闭你的防病毒软件&#xff0c;以免其误报导致操作失败。 资源 SQL Prompt 10 https://www.aliyundrive.com/s/QuMWkvE1Sv6 点击链接保存&#xff0c;或者复制本段内容&#xff0c;打开「阿里云盘」APP &#xff0c;无需下载极速在线查看&…

【数据结构】树与二叉树(十六):二叉树的基础操作:插入结点(算法Insert)

文章目录 5.2.1 二叉树二叉树性质引理5.1&#xff1a;二叉树中层数为i的结点至多有 2 i 2^i 2i个&#xff0c;其中 i ≥ 0 i \geq 0 i≥0。引理5.2&#xff1a;高度为k的二叉树中至多有 2 k 1 − 1 2^{k1}-1 2k1−1个结点&#xff0c;其中 k ≥ 0 k \geq 0 k≥0。引理5.3&…

通讯录实现之进阶版将通讯录数据保存在文件中(完整代码)

我们在之前的博客中已经写过两版通讯录了&#xff1a; 第一版是用C语言实现了通讯录&#xff0c;但是通讯录的存储人数信息是固定的&#xff0c;用完就没有了 感兴趣的可以转到对应博客看一下&#xff0c;附带链接&#xff1a;第一版通讯录 第二版是在第一版的基础上动态开辟…

三大开源向量数据库大比拼

向量数据库具有一系列广泛的好处&#xff0c;特别是在生成式人工智能方面&#xff0c;更具体地说&#xff0c;是在大语言模型&#xff08;LLM&#xff09;方面。这些好处包括先进的索引和精确的相似度搜索&#xff0c;有助于交付强大的先进项目。 本文将对三种开源向量数据库&…

NTP时钟同步服务器(卫星授时服务)在云计算数据机房的应用

NTP时钟同步服务器&#xff08;卫星授时服务&#xff09;在云计算数据机房的应用 NTP时钟同步服务器&#xff08;卫星授时服务&#xff09;在云计算数据机房的应用 1、云计算定义与特点 云计算概念定义 现阶段广为被接受的定义来自于每个国家标准与技术研究院&#xff08;NIS…

shell之xargs命令介绍

shell之xargs命令介绍 参数用法介绍 参数 xargs命令的参数选项包括&#xff1a; -a file&#xff1a;从文件中读入作为stdin。 -e flag&#xff1a;注意有的时候可能会是-E&#xff0c;flag必须是一个以空格分隔的标志&#xff0c;当xargs分析到含有flag这个标志的时候就停止…

虚幻引擎:UEC++中如何解析JSON字符串

一丶解析对象型JSON //解析对象形JSONFString JsonString TEXT("{\"name\":\"二狗\"}");//通过解析工厂创建解析阅读器TSharedRef<TJsonReader<>> Json TJsonReaderFactory<>::Create(JsonString);//创建用于接收的UE的Jso…

使用Vue实现弹窗效果

弹窗效果是在Web开发中经常用到的一种交互效果&#xff0c;它可以在用户点击某个按钮或者触发某个事件时显示一个悬浮框&#xff0c;提供用户与页面进行交互的机会。Vue作为一种流行的JavaScript框架&#xff0c;提供了丰富的工具和方法&#xff0c;可以方便地实现弹窗效果。本…

android 使用BouncyCastle

网址&#xff1a; https://square.github.io/retrofit/ https://github.com/square/retrofit/ https://www.jianshu.com/p/81754adcd4ae android jdk8使用 implementation org.bouncycastle:bcprov-jdk15on:1.70 报异常&#xff1a; java.security.NoSuchAlgorithmExcep…