论文笔记:SimiDTR: Deep Trajectory Recovery with Enhanced Trajectory Similarity

DASFFA 2023

1 intro

1.1 背景

  • 由于设备和环境的限制(设备故障,信号缺失),许多轨迹以低采样率记录,或者存在缺失的位置,称为不完整轨迹
    • 恢复不完整轨迹的缺失空间-时间点并降低它们的不确定性是非常重要的
  • 一般来说,关于轨迹恢复的先前研究可以分为两个方向
    • 第一个方向:模拟用户在不同位置之间的转换模式,以预测用户的缺失位置
      • 本质上是一个分类任务,恢复的轨迹通常由位置或POI组成
    • 第二个方向:基于记录的不完整轨迹数据,恢复缺失时间戳处的特定地理坐标
      • 最终重建的轨迹通常由精确的GPS或道路网络坐标组成
      • 论文专注于这个方法
      • 针对第二方向的一种直接方法是将单个轨迹直接视为二维时间序列,并应用时间序列插值方法来恢复不完整轨迹
        • 在恢复过程中耗尽单个不完整轨迹的所有精确信息
        • 当缺失轨迹数据的比例较小时效果非常好
        • 随着缺失比例的增加,有效性会显著下降
          • ——>无法处理稀疏的轨迹数据
      • 另一个常见的解决方案是基于单元格的方法
        • 将空间划分为离散的单元格,然后恢复由单元格描述的缺失轨迹,并设计不同的后校准算法来精炼结果
        • 将轨迹恢复问题从无限连续空间转换为有限离散空间,降低了预测的复杂性,提高了模型对转换模式的建模能力
        • 不足点
          • 仅使用不完整轨迹中包含的信息,而没有充分利用来自其他轨迹的信息
          • 使用单元格来表示轨迹,不可避免地会引入一些额外的噪声和不准确信息
          • 在校准阶段,缺乏获得准确轨迹坐标的有效信息

1.2 本文思路

  • 利用不同轨迹之间的相似性建模不完整轨迹的复杂移动规律,论文提出了一个新颖的轨迹恢复框架,称为具有增强轨迹相似性的深度轨迹恢复(SimiDTR),以恢复轨迹的精确坐标
    • 为了解决数据稀疏的问题,论文设计了一个基于规则的信息提取器,用于提取一个原始的相似轨迹,该轨迹具有关于给定不完整轨迹的相关空间信息
      • 原始的相似轨迹是通过整合来自几个其他相关不完整轨迹的信息得到的
    • 考虑到轨迹数据的特性(例如,空间偏差、时间偏差和时间位移),论文使用一个基于注意力的深度神经网络模型来整理这个原始的相似轨迹,并生成一个量身定制的相似轨迹,适应于不完整轨迹
      • 这个相似轨迹实际上并不存在,但最适合不完整轨迹的数据,用于恢复不完整轨迹
    • 为了充分利用轨迹坐标信息,我们在连续空间中进行轨迹恢复

2 related works

  • 根据要恢复的对象,轨迹恢复可以分为位置恢复和坐标恢复
    • 位置恢复旨在预测轨迹的缺失位置(例如,兴趣点POI)
      • Bi-STDDP考虑了双向时空依赖性
        • Modelling of bi-directional Spatio-temporal dependence and users’ dynamic preferences for missing poi checkin identification AAAI 2019
      • AttnMove利用注意力机制将聚合的历史轨迹信息注入恢复过程
        • AttnMove: history enhanced trajectory recovery via attentional network 2021 Arxiv
      • 在AttnMove的基础上,PeriodicMove考虑了轨迹移动周期性的影响
        • PeriodicMove: shiftaware human mobility recovery with graph neural network CIKM 2021
    • 坐标恢复
      • 基于时间序列的方法
        • 将轨迹数据视为二维时间序列,时间序列插补方法可以用来恢复轨迹(时间序列)中缺失的坐标
      • 基于单元格的方法
        • 生成由单元格表示的恢复轨迹,然后使用后校准算法获取轨迹的坐标
        • Wei等人构建了一个通过聚合轨迹的top-k路线推断框架
          • 使用线性回归作为后校准模块
        • Ren等人提出了一个深度学习模型,该模型利用传统的seq2seq框架和注意力机制
          • 将单元格级轨迹输入深度学习模型,并直接预测道路段ID和移动比例

3 问题定义

3.1 位置

一个位置由 l=(lon,lat) 表示,其中 lonlon 和 latlat 分别代表其经度和纬度

3.2 区域

将地理空间划分为一组离散且不相交的正方形区域,记为 R。每个区域(也称为网格或单元格),记为 r∈R

3.3 轨迹点

  • 轨迹点是从移动对象采样的点,表示为 )p=(lon,lat,t),其中 t 表示其时间戳。
  • 如果已知轨迹点的位置,则为记录的轨迹点(简称记录点),我们可以得到该点所在的区域 r。
  • 否则,它是一个缺失的轨迹点(简称缺失点),表示为\tilde{p}

3.4 采样间隔

  • 采样间隔,记为 Δ,是两个连续轨迹点之间的时间差
  • 理想情况下,轨迹数据的采样间隔是固定常数,但由于轨迹数据的固有时间偏差,采样间隔在大多数情况下经常接近 Δ 变化

3.5 完整轨迹

记为tr=p1​→…→pi​→…→pn​,是从移动对象采样的记录点序列,其中 pi​ 是 tr 的第 i 个轨迹点

3.6 不完整轨迹

一个不完整轨迹由记录点序列和缺失点组成

3.7 问题定义

给定一组具有采样间隔 Δ 的不完整轨迹,目标是恢复它们缺失的坐标

4 模型

4.1 基于规则的信息提取器

4.1.1 填充模组

4.2 轨迹embedding层

  • 对于一个不完整的轨迹 tr=p1​→⋯→pn​,n∈N,其中 n 是轨迹 tr 的长度,N 是数据集中最长轨迹的长度。
  • 轨迹 tr 的位置和时间戳分别是 L∈Rn×2 和T∈Rn×1

4.2.1 位置嵌入

4.2.2 时间戳嵌入

  • 对于 T 中的每个时间戳 t,可以计算出 t 是当前小时的第 t_{min}分钟和当前分钟的第t_{sec}
  • 然后我们将它们映射到区间 [-0.5, 0.5] 并遵循线性变换

4.2.3 坐标嵌入

为了确保缺失点(由0 \in R^{1 \times 2}填充)在映射到高维空间时仍然是 0 ( 0 \in R^{1 \times d} ),我们使用一维卷积作为映射函数

4.2.4 嵌入整合

  • 假设 tr 的原始相似轨迹表示为 trrs。
    • 因为trrs只是相关空间信息的刚性组合,这意味着 T 在缺失点上不适合 trrs

4.3 encoder-decoder

5 实验

5.1 数据

  • 从波尔图1和上海2收集的两个真实世界出租车轨迹数据集。
    • 对于波尔图数据集,我们将间隔从15秒转换为1分钟
    • 对于上海出租车数据集,我们将出租车的停留点视为边界来分割它们整天的轨迹
  • 移除所有包含超出纬度和经度范围点的轨迹
  • 如果某一区域中的轨迹点数量少于区域点阈值,我们将移除这些区域以及其中的点
  • 经过预处理后,波尔图的时间间隔是常数,即60秒,而上海的时间间隔是可变的
  • 将每个数据集分成三个部分,分割比例为7:1:2,作为训练集、验证集和测试集
  • 随机保留每条轨迹1 − ratio%(ratio =30, 50, 70)的点

5.2 结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/139142.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RT-Thread构建与配置系统

简述 RT-Thread的构建与配置系统由以下几个部分组成: KConfig:kernel config配置文件(提供系统的配置裁剪功能)SCons:构建工具env工具:主要提供构建系统所需的各种环境变量以及软件包的管理 Kconfig在R…

【C++】this指针讲解超详细!!!

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …

Zookeeper篇---第五篇

系列文章目录 文章目录 系列文章目录一、Zookeeper为什么要这么设计?二、你知道Zookeeper中有哪些角色?三、你熟悉Zookeeper节点ZNode和相关属性吗?一、Zookeeper为什么要这么设计? ZooKeeper设计的目的是提供高性能、高可用、顺序一致性的分布式协调服务、保证数据最终一…

ElasticSearch的集群、节点、索引、分片和副本

Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档。为了方便大家理解,我们将Elasticsearch里存储文档数据和关系型数据库MySQL存储数据的概念进行一个类比 ES里的Index可以看做一个库,而Types相当于表,Documents则相当…

宠物社区系统宠物领养小程序,宠物救助小程序系统多少钱?

当前很多的宠物被抛弃和虐杀,它们没有选择权,我们强制性的把狗带进人类的生活中,然后又无情的抛弃,让它们无家可归,变成流浪狗,它们做错了什么?流浪动物被主人遗弃之后居无定所,时刻…

海康工业相机如何提高相机帧率

影响帧率的因素 相机参数 帧率限制使能 像素格式 曝光时间 数据包大小(网口) 相机默认参数 ADC位深 系统环境设置

HDU 1716:排列2 ← next_permutation()

【题目来源】http://acm.hdu.edu.cn/showproblem.php?pid1716【题目描述】 Ray又对数字的列产生了兴趣: 现有四张卡片,用这四张卡片能排列出很多不同的4位数,要求按从小到大的顺序输出这些4位数。【输入格式】 每组数据占一行,代…

相机内外参实践之点云投影矢量图

目录 概述 涉及到的坐标变换 深度值可视化 3D点云的2D投影实现 实现效果 参考文献 概述 Camer的内外参在多模态融合中主要涉及到坐标系变换,即像素坐标、相机坐标以及其他坐标系。这篇就针对点云到图像的投影与反投影做代码实践,来构建一张具有深度…

阿里云-maven私服idea访问私服与组件上传

1.进入aliyun制品仓库 2. 点击 生产库-release进入 根据以上步骤修改本地 m2/setting.xml文件 3.pom.xml文件 点击设置获取url 4. idea发布组件

【JAVA学习笔记】 68 - 网络——TCP编程、UDP编程

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter21/src 网络 一、网络相关概念 1.网络通讯 1.概念:两台设备之间通过网络实现数据传输 2.网络通信:将数据通过网络从一台设备传输到另一台设备 3. java.net包下提供了一系列的类或接口&a…

NFS文件系统共享服务器实战

架设一台NFS服务器,并按照以下要求配置 准备 两台Linux虚拟机一台作为服务端server,一台作为客户端client server IPV4:192.168.110.136/24 client IPV4:192.168.110.134/24 两台服务器都需要关闭防火墙和seLinux 服…

优化编辑距离以测量文本相似度

一、说明 编辑距离是一种文本相似度度量,用于测量 2 个单词之间的距离。它有许多方面应用,如文本自动完成和自动更正。 对于这两种用例中的任何一种,系统都会将用户输入的单词与字典中的单词进行比较,以找到最接近的匹配项&#x…

智慧城市数据中台建设方案:PPT全文51页,附下载

关键词:智慧城市解决方案,数据中台解决方案,智慧城市建设,数据中台技术架构,数据中台建设 一、智慧城市数据中台建设背景 智慧城市数据中台是在城市数字化转型和智能化升级的背景下提出的,旨在实现城市数…

Visual Studio 2019下编译OpenCV 4.7 与OpenCV 4.7 contrib

一、环境 使用的环境是Win10,Visual Studio 2019,Cmake3.28,cdua 11.7,cudnn 8.5,如果只是在CPU环境下使用,则不用安装CUDA。要使用GPU处理,安装好CUDA之后,要测试安装的CUDA是否能用。不能正常使用的话,添加一下系统…

Mac安装与配置eclipse

目录 一、安装Java:Mac环境配置(Java)----使用bash_profile进行配置(附下载地址) 二、下载和安装eclipse 1、进入eclipse的官网 (1)、点击“Download Packages ”​编辑 (2)、找到macOS选择符合自己电脑的框架选项…

一步一步详细介绍如何使用 OpenCV 制作低成本立体相机

在这篇文章中,我们将学习如何创建定制的低成本立体相机(使用一对网络摄像头)并使用 OpenCV 捕获 3D 视频。我们提供 Python 和 C++ 代码。文末并附完整的免费代码下载链接 我们都喜欢观看上面所示的 3D 电影和视频。您需要如图 1 所示的红青色 3D 眼镜才能体验 3D 效果。它是…

深入理解JVM虚拟机第二十篇:静态变量和局部变量的对比以及栈帧对垃圾回收的意义以及JVM中栈帧与堆内对象的应用关系图示

大神链接:作者有幸结识技术大神孙哥为好友,获益匪浅。现在把孙哥视频分享给大家。 孙哥链接:孙哥个人主页 作者简介:一个颜值99分,只比孙哥差一点的程序员 本专栏简介:话不多说,让我们一起干翻JVM 本文章简介:话不多说,让我们讲清楚静态变量和局部变量的对比 文章目录…

kubeadm部署k8s及高可用

目录 CNI 网络组件 1、flannel的功能 2、flannel的三种模式 3、flannel的UDP模式工作原理 4、flannel的VXLAN模式工作原理 5、Calico主要组成部分 6、calico的IPIP模式工作原理 7、calico的BGP模式工作原理 8、flannel 和 calico 的区别 Kubeadm部署k8s及高可用 1、…

1Panel 升级 Halo报错

1Panel 升级 Halo报错 通过 1panel 升级 2.10.0 -> 2.10.1 后启动失败,出现 No value found for protocol 错误, 1Panel-halo-rzxY | Caused by: io.r2dbc.spi.NoSuchOptionException: No value found for protocol 1Panel-halo-rzxY | at io.r2dbc.spi.Conn…

API SIX系列-服务搭建(一)

APIsix简介 APISIX是一个微服务API网关,具有高性能、可扩展性等优点。它基于nginx(openresty)、Lua、etcd实现功能,借鉴了Kong的思路。和传统的API网关相比,APISIX具有较高的性能和较低的资源消耗,并且具有…