ElasticSearch的集群、节点、索引、分片和副本

Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档。为了方便大家理解,我们将Elasticsearch里存储文档数据和关系型数据库MySQL存储数据的概念进行一个类比

ES里的Index可以看做一个库,而Types相当于表,Documents则相当于表的行。

这里Types的概念已经被逐渐弱化,Elasticsearch 6.X中,一个index下已经只能包含一个type,Elasticsearch 7.X中, Type的概念已经被删除了。

1. 集群(Cluster)

1.1 集群简介

分布式系统的可用性与扩展性

高可用性

服务可用性一允许有节点停止服务

数据可用性-部分节点丢失,不会丢失数据

可扩展性

请求量提升一数据的不断增长(将数据分布到所有节点上)

Easticsearch 的分布式架构的好处

存储的水平扩容

提高系统的可用性,部分节点停止服务,整人集群的服务不受影响

Elasticsearch的分布式架构

不同的集群通过不同的名字来区分,默认名字“elasticsearch"

通过配置文件修改,或者在命令行中-E cluster.name=cluster_name 进行设定

一人集群可以有一人或者多人节点

一个集群就是由一个或多个服务器节点组织在一起,共同持有整个的数据,并一起提供索引和搜索功能。

一个Elasticsearch集群有一个唯一的名字标识,这个名字默认就是”elasticsearch”。这个名字是重要的,因为一个节点只能通过指定某个集群的名字,来加入这个集群。

1.1 集群健康状态

# 获取集群健康状态
GET _cluster/health
# 获取集群健康状态,精确到索引
GET _cluster/health?level=indices
# 获取集群健康状态,精确到分片
GET _cluster/health?level=shards
# 获取集群健康状态,精确到某几个索引
GET /_cluster/health/kibana_sample_data_ecommerce,kibana_sample_data_flights
# 获取集群健康状态,精确到某个索引的分片
GET /_cluster/health/kibana_sample_data_flights?level=shards
{"cluster_name" : "elasticsearch","status" : "green","timed_out" : false,"number_of_nodes" : 1,"number_of_data_nodes" : 1,"active_primary_shards" : 12,"active_shards" : 12,"relocating_shards" : 0,"initializing_shards" : 0,"unassigned_shards" : 0,"delayed_unassigned_shards" : 0,"number_of_pending_tasks" : 0,"number_of_in_flight_fetch" : 0,"task_max_waiting_in_queue_millis" : 0,"active_shards_percent_as_number" : 100.0
}

1.2 集群详细信息

GET _cluster/state

1.3 集群的统计信息

GET _cluster/stats

返回结果包含集群、节点、索引的详细统计信息。

1.3 集群的设置信息

GET /_cluster/settings
# 包含默认值设置
GET /_cluster/settings?include_defaults=true
{"persistent" : { },"transient" : { }
}

2. 节点(Node)

2.1 节点简介

节点是一个 Elasticsearch 的实例,本质上就是一个JAVA进程。

一台机器上可以运行多个Elasticsearch 进程,但是生产环境一般建议一台机器上只运

行一个 Elasticsearch 实例。

每一个节点都有名字,通过配置文件配置,或者启动时候-E node.name=node1指定。

每一个节点在启动之后,会分配一个 UID,保存在 data 目录下。

集群中包含很多服务器,一个节点就是其中的一个服务器。作为集群的一部分,它存储数据,参与集群的索引和搜索功能。

一个节点也是由一个名字来标识的,默认情况下,这个名字是一个随机的漫威漫画角色的名字,这个名字会在启动的时候赋予节点。这个名字对于管理工作来说挺重要的,因为在这个管理过程中,你会去确定网络中的哪些服务器对应于Elasticsearch集群中的哪些节点。

一个节点可以通过配置集群名称的方式来加入一个指定的集群。默认情况下,每个节点都会被安排加入到一个叫做“elasticsearch”的集群中,这意味着,如果你在你的网络中启动了若干个节点,并假定它们能够相互发现彼此,它们将会自动地形成并加入到一个叫做“elasticsearch”的集群中。

节点类型

描述

Master-eligible nodes 

和 Master Node

每个节点启动后,默认就是一个Master eligible节点,可以设置 node.master:false 禁止

Master-eligible节点可以参加选主流程,成为Master节点

当第一个节点启动时候,它会将自己选举成Master节点

每个节点上都保存了集群的状态,只有Master节点才能修改集群的状态信息

集群状态(Cluster State),维护了一个集群中,必要的信息

1)所有的节点信息

2)所有的索引和其相关的 Mapping 与 Setting 信息

3)分片的路由信息

任意节点都能修改信息会导致数据的不一致性

Data Node 

可以保存数据的节点,叫做Data Node。负责保存分片数据。在数据扩展上起到了至关重要的作用

Coordinating Node

负责接受Client的请求,将请求分发到合适的节点,最终把结果汇集到一起,每个节点默认都起到了 Coordinating Node的职贵

Hot & Warm Node

不同硬件配置的 Data Node,用来实现 Hot & Warm 架构,降低集群部署的成本

Machine Learning Node

负责跑 机器学习的Job,用来做异常检测

Tribe Node

(5.3 开始使用 Cross Cluster Serarch)Tribe Node 连接到不同的 Elasticsearch 集群,并且支持将这些集群当成一个单独的集群处理

2.2 节点基本信息

GET _cat/nodes?v
GET /_cat/nodes?v&h=id,ip,port,v,m

2.3 获取单个节点的详细信息

GET /_nodes/node-1

3. 索引(Index)

一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字来标识(必须全部是小写字母),并且当我们要对这个索引中的文档进行索引、搜索、更新和删除的时候,都要使用到这个名字。在一个集群中,可以定义任意多的索引。

能搜索的数据必须索引,这样的好处是可以提高查询速度,比如:新华字典前面的目录就是索引的意思,目录可以提高查询速度。

Elasticsearch索引的精髓:一切设计都是为了提高搜索的性能。

3.1 页面查看索引信息

页面查看索引信息,左侧菜单打开StackManagement

包括隐藏的索引

3.2 命令查看索引信息

或者可以切换到开发工具视图,用开发工具查询

GET /_cat/indices

3.3 查看kibana前缀的索引信息

GET /_cat/indices/kibana*?v&s=index

3.4 查看状态为健康的索引信息

GET /_cat/indices?v&health=green

3.5 索引文档数量排序

GET /_cat/indices?v&s=docs.count:desc

3.6 查看单个索引的详细信息

GET kibana_sample_data_ecommerce

在这里会列出索引的别名、映射和设置信息。

3.7 查看索引的文档总数

#查看索引的文档总数
GET kibana_sample_data_ecommerce/_count
{"count" : 4675,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0
  }
}

3.8 查看索引的前10条文档

#查看前10条文档,了解文档格式
POST kibana_sample_data_ecommerce/_search

3.9 创建索引

PUT myindex

3.10 删除索引

DELETE myindex

4.分片(Shards)

4.1 分片简介

一个索引可以存储超出单个节点硬件限制的大量数据。比如,一个具有10亿文档数据的索引占据1TB的磁盘空间,而任一节点都可能没有这样大的磁盘空间。或者单个节点处理搜索请求,响应太慢。为了解决这个问题,Elasticsearch提供了将索引划分成多份的能力,每一份就称之为分片。

当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。

分片很重要,主要有两方面的原因:

1)允许你水平分割 / 扩展你的内容容量。

2)允许你在分片之上进行分布式的、并行的操作,进而提高性能/吞吐量。

至于一个分片怎样分布,它的文档怎样聚合和搜索请求,是完全由Elasticsearch管理的,对于作为用户的你来说,这些都是透明的,无需过分关心。

被混淆的概念是,一个 Lucene 索引 我们在 Elasticsearch 称作 分片 。 一个 Elasticsearch 索引 是分片的集合。 当 Elasticsearch 在索引中搜索的时候, 他发送查询到每一个属于索引的分片(Lucene 索引),然后合并每个分片的结果到一个全局的结果集。

总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制的数量,但是你事后不能改变分片的数量。默认情况下,Elasticsearch中的每个索引被分片1个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有1个主分片和另外1个复制分片(1个完全拷贝),这样的话每个索引总共就有2个分片,我们需要根据索引需要确定分片个数。

4.2 主分片(Primary Shard )和副本分片(Replica Shard)

主分片,用以解决数据水平扩展的问题。通过主分片,可以将数据分布到集群内的所有节点之

一个分片是一人运行的 Lucene 的实例

主分片数在索引创建时指定,后续不允许修改,除非 Reindex副本,用以解决数据高可用的问题。分片是主分片的拷贝。

副本分片数,可以动态题调整。

增加副本数,还可以在一定程度上提高服务的可用性(读取的吞吐)

4.3 分片设定策略

一个三节点的集群中,blogs 索引的分片分布情况,思考:增加一个节点或改大主分片数对系统的影响?

对于生产环境中分片的设定,需要提前做好容量规划

分片数设置过小

1)后续无法增加节点实现水品扩展

2)单个分片的数据量太大,导致数据重新分配耗时

分片数设置过大

1)影响搜索结果的相关性打分,影响统计结果的准确性

2)单个节点上过多的分片,会导致资源浪费,同时也会影响性能

3)7.0开始,默认主分片设置成1,解决了over-sharding的问题

GET _cat/shards
GET _cat/shards?h=index,shard,prirep,state,unassigned.reason

5.副本(Replicas)

在一个网络 / 云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片(副本)。

复制分片之所以重要,有两个主要原因: 

1在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。

2扩展你的搜索量/吞吐量,因为搜索可以在所有的副本上并行运行。

总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制的数量,但是你事后不能改变分片的数量。默认情况下,Elasticsearch中的每个索引被分片1个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有1个主分片和另外1个复制分片(1个完全拷贝),这样的话每个索引总共就有2个分片,我们需要根据索引需要确定分片个数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/139138.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

宠物社区系统宠物领养小程序,宠物救助小程序系统多少钱?

当前很多的宠物被抛弃和虐杀,它们没有选择权,我们强制性的把狗带进人类的生活中,然后又无情的抛弃,让它们无家可归,变成流浪狗,它们做错了什么?流浪动物被主人遗弃之后居无定所,时刻…

海康工业相机如何提高相机帧率

影响帧率的因素 相机参数 帧率限制使能 像素格式 曝光时间 数据包大小(网口) 相机默认参数 ADC位深 系统环境设置

HDU 1716:排列2 ← next_permutation()

【题目来源】http://acm.hdu.edu.cn/showproblem.php?pid1716【题目描述】 Ray又对数字的列产生了兴趣: 现有四张卡片,用这四张卡片能排列出很多不同的4位数,要求按从小到大的顺序输出这些4位数。【输入格式】 每组数据占一行,代…

相机内外参实践之点云投影矢量图

目录 概述 涉及到的坐标变换 深度值可视化 3D点云的2D投影实现 实现效果 参考文献 概述 Camer的内外参在多模态融合中主要涉及到坐标系变换,即像素坐标、相机坐标以及其他坐标系。这篇就针对点云到图像的投影与反投影做代码实践,来构建一张具有深度…

阿里云-maven私服idea访问私服与组件上传

1.进入aliyun制品仓库 2. 点击 生产库-release进入 根据以上步骤修改本地 m2/setting.xml文件 3.pom.xml文件 点击设置获取url 4. idea发布组件

【JAVA学习笔记】 68 - 网络——TCP编程、UDP编程

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter21/src 网络 一、网络相关概念 1.网络通讯 1.概念:两台设备之间通过网络实现数据传输 2.网络通信:将数据通过网络从一台设备传输到另一台设备 3. java.net包下提供了一系列的类或接口&a…

NFS文件系统共享服务器实战

架设一台NFS服务器,并按照以下要求配置 准备 两台Linux虚拟机一台作为服务端server,一台作为客户端client server IPV4:192.168.110.136/24 client IPV4:192.168.110.134/24 两台服务器都需要关闭防火墙和seLinux 服…

优化编辑距离以测量文本相似度

一、说明 编辑距离是一种文本相似度度量,用于测量 2 个单词之间的距离。它有许多方面应用,如文本自动完成和自动更正。 对于这两种用例中的任何一种,系统都会将用户输入的单词与字典中的单词进行比较,以找到最接近的匹配项&#x…

智慧城市数据中台建设方案:PPT全文51页,附下载

关键词:智慧城市解决方案,数据中台解决方案,智慧城市建设,数据中台技术架构,数据中台建设 一、智慧城市数据中台建设背景 智慧城市数据中台是在城市数字化转型和智能化升级的背景下提出的,旨在实现城市数…

Visual Studio 2019下编译OpenCV 4.7 与OpenCV 4.7 contrib

一、环境 使用的环境是Win10,Visual Studio 2019,Cmake3.28,cdua 11.7,cudnn 8.5,如果只是在CPU环境下使用,则不用安装CUDA。要使用GPU处理,安装好CUDA之后,要测试安装的CUDA是否能用。不能正常使用的话,添加一下系统…

Mac安装与配置eclipse

目录 一、安装Java:Mac环境配置(Java)----使用bash_profile进行配置(附下载地址) 二、下载和安装eclipse 1、进入eclipse的官网 (1)、点击“Download Packages ”​编辑 (2)、找到macOS选择符合自己电脑的框架选项…

一步一步详细介绍如何使用 OpenCV 制作低成本立体相机

在这篇文章中,我们将学习如何创建定制的低成本立体相机(使用一对网络摄像头)并使用 OpenCV 捕获 3D 视频。我们提供 Python 和 C++ 代码。文末并附完整的免费代码下载链接 我们都喜欢观看上面所示的 3D 电影和视频。您需要如图 1 所示的红青色 3D 眼镜才能体验 3D 效果。它是…

深入理解JVM虚拟机第二十篇:静态变量和局部变量的对比以及栈帧对垃圾回收的意义以及JVM中栈帧与堆内对象的应用关系图示

大神链接:作者有幸结识技术大神孙哥为好友,获益匪浅。现在把孙哥视频分享给大家。 孙哥链接:孙哥个人主页 作者简介:一个颜值99分,只比孙哥差一点的程序员 本专栏简介:话不多说,让我们一起干翻JVM 本文章简介:话不多说,让我们讲清楚静态变量和局部变量的对比 文章目录…

kubeadm部署k8s及高可用

目录 CNI 网络组件 1、flannel的功能 2、flannel的三种模式 3、flannel的UDP模式工作原理 4、flannel的VXLAN模式工作原理 5、Calico主要组成部分 6、calico的IPIP模式工作原理 7、calico的BGP模式工作原理 8、flannel 和 calico 的区别 Kubeadm部署k8s及高可用 1、…

1Panel 升级 Halo报错

1Panel 升级 Halo报错 通过 1panel 升级 2.10.0 -> 2.10.1 后启动失败,出现 No value found for protocol 错误, 1Panel-halo-rzxY | Caused by: io.r2dbc.spi.NoSuchOptionException: No value found for protocol 1Panel-halo-rzxY | at io.r2dbc.spi.Conn…

API SIX系列-服务搭建(一)

APIsix简介 APISIX是一个微服务API网关,具有高性能、可扩展性等优点。它基于nginx(openresty)、Lua、etcd实现功能,借鉴了Kong的思路。和传统的API网关相比,APISIX具有较高的性能和较低的资源消耗,并且具有…

react类式组件的生命周期和useEffect实现函数组件生命周期

概念 生命周期是一个组件丛创建,渲染,更新,卸载的过程,无论是vue还是react都具有这个设计概念,也是开发者必须熟练运用的,特别是业务开发,不同的生命周期做不同的事是很重要的. ....多说两句心得,本人是先接触vue的,无论是vue2还是vue3的生命周期,在理解和学习上都会比react更…

SVN 服务器建立

1.建立SVN库 svnadmin create cat svndir/conf/passwd 修改SVN用户密码 chenht 123456 2.建立目录权限 [aliases] # joe /CXZ/STDessert/LSnake City/OSnake Oil, Ltd./OUResearch Institute/CNJoe Average [groups] # harry_and_sally harry,sally # harry_sally_…

嵌入式养成计划-52----ARM--开发板介绍--相关硬件基础内容介绍--GPIO讲解

一百三十一、开发板介绍 131.1 核心板介绍 131.2 拓展板 一百三十二、相关硬件基础内容介绍 132.1 PCB PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板, 是重要的电子部件,是电子元器…

Linux常用命令——bzless命令

在线Linux命令查询工具 bzless 增强.bz2压缩包查看器 补充说明 bzless命令是增强“.bz2”压缩包查看器,bzless比bzmore命令功能更加强大。 语法 bzless(参数)参数 文件:指定要分屏显示的.bz2压缩包。 在线Linux命令查询工具