【文件系统—散列结构文件】

文章目录

    • 一、实验目的
      • 实验内容
      • 设计思路
    • 三、实验代码实现
    • 四、总结

一、实验目的

理解linux文件系统的内部技术,掌握linux与文件有关的系统调用命令,并在此基础上建立面向随机检索的散列结构文件;## 二、实验内容与设计思想

实验内容

1.设计一组散列文件函数,包括散列文件的创建,打开,关闭,读,写等;
2.编写一个测试程序,通过记录保存,查找,删除等操作,检查上述散列文件是否实现相关功能;

设计思路

  1. 设计散列文件函数
    我设计了一组散列文件函数,涵盖了散列文件的创建、打开、关闭、读和写等操作。这些函数是构建散列结构文件的基础,通过合理的设计和实现,确保了文件操作的高效性和正确性。
  2. 编写测试程序
    为了验证散列文件的功能,我编写了一个测试程序,通过记录的保存、查找和删除等操作,检查散列文件是否能正常工作。这个测试程序就像是一个 “质检员”,帮助我发现并解决代码中可能存在的问题。

三、实验代码实现

#include <stdio.h>
#include <stdlib.h>
#include <string.h>#define HASH_TABLE_SIZE 10  // 散列表大小
#define MAX_RECORD_LENGTH 100 // 记录最大长度typedef struct Record {char key[20];             // 记录的关键字char data[MAX_RECORD_LENGTH]; // 记录的数据struct Record* next;      // 链接到下一个记录(用于处理冲突)
} Record;typedef struct HashTable {Record* table[HASH_TABLE_SIZE]; // 散列表
} HashTable;// 哈希函数
unsigned int hash(const char* key) {unsigned int hashValue = 0;while (*key) {hashValue = (hashValue << 5) + *key; // 左移 5 位并加上当前字符的 ASCII 值key++;}return hashValue % HASH_TABLE_SIZE;
}// 创建散列文件
HashTable* createHashTable() {HashTable* ht = (HashTable*)malloc(sizeof(HashTable));memset(ht, 0, sizeof(HashTable)); // 初始化散列表return ht;
}// 插入记录
void insertRecord(HashTable* ht, const char* key, const char* data) {unsigned int index = hash(key);Record* newRecord = (Record*)malloc(sizeof(Record));strcpy(newRecord->key, key);strncpy(newRecord->data, data, MAX_RECORD_LENGTH);newRecord->next = ht->table[index]; // 插入链表的头部ht->table[index] = newRecord;
}// 查找记录
Record* findRecord(HashTable* ht, const char* key) {unsigned int index = hash(key);Record* record = ht->table[index];while (record != NULL) {if (strcmp(record->key, key) == 0) {return record; // 找到记录}record = record->next;}return NULL; // 未找到记录
}// 删除记录
void deleteRecord(HashTable* ht, const char* key) {unsigned int index = hash(key);Record* record = ht->table[index];Record* prev = NULL;while (record != NULL) {if (strcmp(record->key, key) == 0) {if (prev == NULL) {ht->table[index] = record->next; // 删除链表头部元素} else {prev->next = record->next; // 删除中间或尾部元素}free(record); // 释放内存return;}prev = record;record = record->next;}
}// 关闭散列文件(释放内存)
void closeHashTable(HashTable* ht) {for (int i = 0; i < HASH_TABLE_SIZE; i++) {Record* record = ht->table[i];while (record != NULL) {Record* temp = record;record = record->next;free(temp); // 释放每个记录}}free(ht); // 释放哈希表
}// 测试程序
int main() {HashTable* ht = createHashTable();// 插入记录insertRecord(ht, "key1", "data1");insertRecord(ht, "key2", "data2");insertRecord(ht, "key3", "data3");// 查找记录Record* found = findRecord(ht, "key2");if (found) {printf("找到记录: %s -> %s\n", found->key, found->data);} else {printf("未找到记录\n");}// 删除记录deleteRecord(ht, "key2");found = findRecord(ht, "key2");if (found) {printf("找到记录: %s -> %s\n", found->key, found->data);} else {printf("未找到记录\n");}// 关闭哈希表closeHashTable(ht);return 0;
}

结果:
在这里插入图片描述

结果分析:

程序首先插入三条记录:
key1 -> data1
key2 -> data2
key3 -> data3
当程序尝试查找key2时,程序找到了该记录,因此输出:Found record: key2 -> data2
接下来,程序删除了key2记录。
再次查key2 时,记录已经被删除,因此输出:Record not found

四、总结

  • 遇到的问题
    第一次运行时,我输错了编译文件的名字,结果提示权限不够。这让我意识到在操作过程中一定要细心,一个小小的失误都可能导致程序无法正常运行。经过修正后,程序的运行结果符合预期。程序先插入了三条记录,然后成功查找到了 key2 对应的记录,接着删除了该记录,再次查找时就显示未找到记录,这表明散列文件的基本功能已经实现。
    在这里插入图片描述
    为了处理哈希冲突,我使用了链式法。通过链表存储多个记录,保证了散列表的完整性。这让我认识到在设计数据结构时,不仅要考虑基本功能的实现,还要考虑可能出现的异常情况,并采取有效的处理方法。
    在实现散列表的过程中,我更加深入地理解了指针和内存管理的重要性。正确地分配和释放内存是保证程序稳定运行的关键,稍有不慎就可能导致内存泄漏或悬空指针等问题。这也提醒我在今后的编程中要养成良好的内存管理习惯。

这次实验让我对 Linux 文件系统和散列结构文件有了更深入的理解,也提升了我的编程能力和问题解决能力。在今后的学习和工作中,我将继续探索数据结构和算法的奥秘,不断提升自己的技术水平。同时,我也会更加注重细节,避免因为粗心而导致的错误。我相信,通过不断的实践和学习,我能够更好地应对各种编程挑战。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/82322.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣26——删除有序数组中的重复项

目录 1.题目描述&#xff1a; 2.算法分析&#xff1a; 3.代码展示&#xff1a; 1.题目描述&#xff1a; 给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对…

ggplot2 | GO barplot with gene list

1. 效果图 2. 代码 数据是GO的输出结果&#xff0c;本文使用的是 metascape 输出的excel挑选的若干行。 # 1. 读取数据 datread.csv("E:\\research\\scPolyA-seq2\\GO-APA-Timepoint\\test.csv", sep"\t") head(dat)# 2. 选择所需要的列 dat.usedat[, c(…

学习搭子,秘塔AI搜索

什么是秘塔AI搜索 《秘塔AI搜索》的网址&#xff1a;https://metaso.cn/ 功能&#xff1a;AI搜索和知识学习&#xff0c;其中学习部分是亮点&#xff0c;也是主要推荐理由。对应的入口&#xff1a;https://metaso.cn/study 推荐理由 界面细节做工精良《今天学点啥》板块的知…

【C语言】--指针超详解(三)

目录 一.数组名的理解 二.使用指针访问数组 三.一维数组传参的本质 四.冒泡排序 五.二级指针 六.指针数组 6.1--指针数组的定义 6.2--指针数组模拟二维数组 &#x1f525;个人主页&#xff1a;草莓熊Lotso的个人主页 &#x1f3ac;作者简介&#xff1a;C方向学习者 &…

Linux防火墙

1.防火墙是一种位于内部网络与外部网络之间的网络安全系统&#xff0c;它依照特定的规则&#xff0c;允许或限制传输的数据通过&#xff0c;以保护内部网络的安全。以下从功能、分类、工作原理等方面为你详细讲解&#xff1a; 功能访问控制&#xff1a;这是防火墙最主要的功能。…

嵌入式培训之C语言学习完(十七)结构体、共用体、枚举、typedef关键字与位运算

目录 一、结构体&#xff08;struct关键字&#xff09; &#xff08;一&#xff09;声明一个结构体数据类型 &#xff08;二&#xff09;结构体的成员初始化与赋值 a、结构体变量赋值 b、结构体成员初始化 c、结构体的定义形式 &#xff08;三&#xff09;考点&#xff…

Python字典:数据操作的核心容器

在Python编程生态中&#xff0c;字典&#xff08;dict&#xff09;是最常用且功能强大的内置数据结构之一。它以键值对&#xff08;Key-Value Pair&#xff09;的形式存储数据&#xff0c;为快速查找、灵活映射关系提供了天然支持。无论是数据清洗、算法实现还是Web开发&#x…

按位宽提取十六进制值

需求&#xff1a;给出一个十六进制值&#xff0c;要求提取high和low位之间的值。比如16ha0f0&#xff0c;这是一个16bit宽的十六进制数0xa0f0&#xff0c;提取[15:12]范围内的值。 def extract_bits(value, high, low):"""从 value 中提取 [high:low] 位的值:p…

LeRobot 项目部署运行逻辑(六)——visualize_dataset_html.py/visualize_dataset.py

可视化脚本包括了两个方法&#xff1a;远程下载 huggingface 上的数据集和使用本地数据集 脚本主要使用两个&#xff1a; 目前来说&#xff0c;ACT 采集训练用的是统一时间长度的数据集&#xff0c;此外&#xff0c;这两个脚本最大的问题在于不能裁剪&#xff0c;这也是比较好…

SSTI模版注入

1、概念 SSTI是一种常见的Web安全漏洞&#xff0c;它允许攻击者通过注入恶意模板代码&#xff0c;使服务器在渲染模板时执行非预期的操作。 &#xff08;1&#xff09;渲染模版 至于什么是渲染模版&#xff1a;服务器端渲染模板是一种Web开发技术&#xff0c;它允许在服务器端…

关于点胶机的精度

一、精度&#xff1a; 1:X/y轴定位精度常通在5个丝左右&#xff0c;Z轴在3个丝左右&#xff0c; 如果采用伺服电机丝杆配置&#xff0c;可提升至于个2丝左右。 2&#xff1a;胶水控制精度&#xff1a;通过喷阀驱动器&#xff0c;气压等参数&#xff0c;实现胶量控制&#xf…

gitee推送更新失败问题记录:remote: error: hook declined to update refs/heads/master

问题描述&#xff1a; gitee推送更新时&#xff0c;提示&#xff1a; 解决方法&#xff1a; 登录Gitee&#xff0c;进入【个人主页】 点击【个人设置】 更改邮箱的配置&#xff0c;如下&#xff1a; 更改“禁止命令行推送暴露个人邮箱”&#xff0c;将其关闭&#xff1a;

Java如何获取电脑分辨率?

以下是一个 Java 程序示例&#xff0c;用于获取电脑的主屏幕分辨率&#xff1a; import java.awt.*; public class ScreenResolutionExample { public static void main(String[] args) { // 获取默认的屏幕设备 GraphicsDevice device GraphicsEnvironm…

WPF 3D图形编程核心技术解析

一、三维坐标系系统 WPF采用右手坐标系系统&#xff0c;空间定位遵循&#xff1a; X 轴 → 右 Y 轴 → 上 Z 轴 → 观察方向 X轴 \rightarrow 右\quad Y轴 \rightarrow 上\quad Z轴 \rightarrow 观察方向 X轴→右Y轴→上Z轴→观察方向 三维坐标值表示为 ( x , y , z ) (x, y,…

【库(Library)、包(Package)和模块(Module)解析】

在Python中&#xff0c;**库&#xff08;Library&#xff09;、包&#xff08;Package&#xff09;和模块&#xff08;Module&#xff09;**是代码组织的不同层级&#xff0c;而import语句的导入行为与它们密切相关。以下是详细对比和解释&#xff1a; &#x1f4e6; 1. 核心概…

裸机上的 printf:在无操作系统环境下构建 C 标准库

在嵌入式开发和底层系统编程领域&#xff0c;裸机开发是一项极具挑战性但又至关重要的任务。想象一下&#xff0c;在没有操作系统支持的情况下&#xff0c;让 C 语言的标准库函数&#xff0c;如printf正常工作&#xff0c;这听起来是不是很有趣又充满挑战&#xff1f;今天&…

基于STM32F103的智能机械臂识别与控制项目(课件PPT+源代码)

以下是基于 STM32F103 的智能机械臂识别与控制项目的详细介绍&#xff1a; 项目概述 该项目以 STM32F103 为核心控制器&#xff0c;结合多种传感器和技术&#xff0c;实现了机械臂的智能识别与控制功能&#xff0c;可完成仓库货物的识别、搬运等任务&#xff0c;并支持多种控…

Codeforces Round 1023 (Div. 2)

Dashboard - Codeforces Round 1023 (Div. 2) - Codeforces 一个构造问题&#xff0c;我把最大的数放在一个数组&#xff0c;其余数放在另一个数组&#xff0c;就能保证gcd不同 来看代码&#xff1a; #include <bits/stdc.h> using namespace std;int main() {int t;ci…

6.01 Python中打开usb相机并进行显示

本案例介绍如何打开USB相机并每隔100ms进行刷新的代码,效果如下: 一、主要思路: 1. 打开视频流、读取帧 self.cam_cap = cv2.VideoCapture(0) #打开 视频流 cam_ret, cam_frame = self.cam_cap.read() //读取帧。 2.使用定时器,每隔100ms读取帧 3.显示到Qt的QLabel…

JVM——即时编译

分层编译模式&#xff1a;动态平衡启动速度与执行效率 分层编译是现代JVM&#xff08;如HotSpot、GraalVM&#xff09;实现高性能的核心策略之一&#xff0c;其核心思想是根据代码的执行热度动态选择不同的编译层次&#xff0c;实现启动速度与运行效率的最佳平衡。以HotSpot虚…