图像分类数据集

《动手学深度学习》-3.5-学习笔记

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
trans = transforms.ToTensor()#用于将图像数据从 PIL 图像格式(Python Imaging Library,Python 的图像处理库)转换为 PyTorch 张量(Tensor)。
mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)#加载训练数据集
mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)#加载测试数据集
  • torchvision.datasets.FashionMNIST 是 PyTorch 提供的用于加载 FashionMNIST 数据集的类。

  • 参数解释:

    • root="../data":指定数据集的存储路径。如果数据集不存在,PyTorch 会自动下载到这个路径。

    • train=True:表示加载训练数据集。

    • transform=trans:指定对图像数据应用的预处理操作,这里是 transforms.ToTensor(),即将图像转换为归一化的张量。

    • download=True:如果指定路径下没有数据集,会自动从网络下载。

    •  了解基础情况:在 PyTorch 中,mnist_train 是一个 torchvision.datasets.FashionMNIST 数据集对象,它是一个可迭代的集合,包含了所有训练样本的图像和标签。mnist_train[3] 表示获取数据集中的第四个样本(索引从 0 开始),包括第四个样本的图像和标签。
    • image.shape 输出 torch.Size([1, 28, 28]),表示图像是一个张量(Tensor),形状为:

      • 1:表示图像有 1 个通道(灰度图)。

      • 28:图像的宽度为 28 像素。

      • 28:图像的高度为 28 像素。

    • label 输出的是一个整数,表示图像的类别标签。FashionMNIST 数据集有 10 个类别,每个类别对应一个整数标签(从 0 到 9)。

    • 打印出来看了一下
       

      def get_fashion_mnist_labels(labels): """返回Fashion-MNIST数据集的文本标签"""text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat','sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']return [text_labels[int(i)] for i in labels]
    • 这是一个列表推导式,用于将输入的整数标签列表 labels 转换为对应的文本标签列表。

    • 对于 labels 中的每个元素 i

      • int(i) 确保 i 是整数(虽然通常 labels 已经是整数,但这里加了保险)。

      • text_labels[int(i)]text_labels 列表中获取对应的文本标签。
        对text_labels

      • 列表的索引(从 0 到 9)对应于数据集中的整数标签。例如:

        • 0 对应 't-shirt'

        • 1 对应 'trouser'

        • 9 对应 'ankle boot'
          下面这段 仅仅是 使用这个函数,应用场景

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): """绘制图像列表"""figsize = (num_cols * scale, num_rows * scale)_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)axes = axes.flatten()for i, (ax, img) in enumerate(zip(axes, imgs)):if torch.is_tensor(img):# 图片张量ax.imshow(img.numpy())else:# PIL图片ax.imshow(img)ax.axes.get_xaxis().set_visible(False)ax.axes.get_yaxis().set_visible(False)if titles:ax.set_title(titles[i])return axes

 show_images 是一个用于批量显示图像的工具函数,

X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));

从 FashionMNIST 数据集中加载一批图像,使用 show_images 函数将图像以 2 行 9 列的网格形式显示,并为每张图像添加文本标签。


 

创建Dataloader

batch_size = 256def get_dataloader_workers():  """使用4个进程来读取数据"""return 4train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers())
def load_data_fashion_mnist(batch_size, resize=None): """下载Fashion-MNIST数据集"""trans = [transforms.ToTensor()]if resize:trans.insert(0, transforms.Resize(resize))trans = transforms.Compose(trans)mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)return (data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers()),data.DataLoader(mnist_test, batch_size, shuffle=False,num_workers=get_dataloader_workers()))

用于下载并加载 FashionMNIST 数据集,并将其转换为适合训练和测试的 DataLoader 对象。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/73329.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

架构师面试(十五):熔断设计

问题 某电商平台经常需要在大促运营活动中暂停评论、退款等业务,基于服务治理的设计理念,我们需要对该电商平台微服务系统的【服务熔断】进行设计,对此下面描述中说法正确的有哪几项呢? A. 服务管控系统管理着平台中所有服务之间…

Ubuntu20.04安装运行DynaSLAM

目录 一、安装Anaconda 二、相关依赖库安装 1、boost安装 2、Eigen 3安装 3、opencv安装 4、Pangolin安装 三、配置Mask_RCNN环境 四、DynaSLAM编译 五、DynaSLAM运行 一、安装Anaconda 打开以下链接: Index of / 下载和自己系统匹配的安装包。这里下…

X86 RouterOS 7.18 设置笔记三:防火墙设置(IPV4)

X86 j4125 4网口小主机折腾笔记五:PVE安装ROS RouterOS X86 RouterOS 7.18 设置笔记一:基础设置 X86 RouterOS 7.18 设置笔记二:网络基础设置(IPV4) X86 RouterOS 7.18 设置笔记三:防火墙设置(IPV4) X86 RouterOS 7.18 设置笔记四…

从 YOLOv1 到 YOLOv2:目标检测的进化之路

引言 你有没有想过,当你用手机拍一张照片,里面的人、车、狗是怎么被自动识别出来的?这背后靠的就是目标检测技术。目标检测是计算机视觉中的一个重要领域,它不仅要回答“图片里有什么”,还要告诉你“这些东西在哪里”…

数据的存储---整型、浮点型

目录 一、整型在内存中的存储 1. 原码、反码、补码 2. 大端与小端 二、浮点数在内存中的存储 1.浮点数的存 2. 浮点数的取 3. 题目解析 一个变量的创建需要在内存中开辟空间,而开辟的空间大小是由数据类型决定的。下面我们就来讨论一下整型、浮点型在内存中的…

Java 大视界 -- Java 大数据在智能教育虚拟实验室建设与实验数据分析中的应用(132)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…

⚡️Jolt -- 通过JSON配置来处理复杂数据转换的工具

简介:一个能够通过JSON配置(特定的语法)来处理复杂数据转换的工具。 比如将API响应转换为内部系统所需的格式,或者处理来自不同来源的数据结构差异。例如,将嵌套的JSON结构扁平化,或者重命名字段&#xff0…

47.全排列 II

47.全排列 II 力扣题目链接 给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。 示例 1: 输入:nums [1,1,2] 输出: [[1,1,2],[1,2,1],[2,1,1]]示例 2: 输入:nums [1,2,3] 输出…

centos没有ll

vi /etc/bashrc alias ll‘ls -l’ source /etc/bashrc

04 1个路由器配置一个子网的dhcp服务

前言 这是最近一个朋友的 ensp 相关的问题, 这里来大致了解一下 ensp, 计算机网络拓扑 相关基础知识 这里一系列文章, 主要是参照了这位博主的 ensp 专栏 这里 我只是做了一个记录, 自己实际操作了一遍, 增强了一些 自己的理解 当然 这里仅仅是一个 简单的示例, 实际场景…

网络空间安全(31)安全巡检

一、定义与目的 定义: 安全巡检是指由专业人员或特定部门负责,对各类设施、设备、环境等进行全面或重点检查,及时发现潜在的安全隐患或问题。 目的: 预防事故发生:通过定期的安全巡检,及时发现并解决潜在的…

在IGH ethercat主站中Domain和Entry之间的关系

在 IGH EtherCAT 主站中,“domain”(域)和 “entry”(条目)存在着紧密的关系,具体如下: 数据组织与管理方面:“domain” 是 EtherCAT 主站中用于管理和处理从站配置、数据映射和数据…

信息学奥赛一本通 1449:【例题2】魔板

题目 1449:【例题2】魔板 分析 首先注意:输入是按顺时针给出的,但我们处理时需要按正常顺序排,可以用以下代码读入 string s(8, 0); // 初始化全零字符串 cin>>s[0]>>s[1]>>s[2]>>s[3]; cin>>…

Unity开发的抖音小游戏接入抖音开放平台中的流量主(抖音小游戏接入广告)

前言:作者在进行小游戏审核版本的过程中,碰到了下列问题,所以对这个抖音小游戏接入广告研究了下。 还有就是作者的TTSDK版本号是6.2.6,使用的Unity版本是Unity2022.3.29f1,最好和作者的两个版本号保持一致,因为我发现TTSDK旧版的很多函数在新版中就已经无法正常使用了,必…

【xv6操作系统】系统调用与traps机制解析及实验设计

【xv6操作系统】系统调用与traps机制解析及实验设计 系统调用相关理论系统调用追溯系统调用实验设计Sysinfo🚩系统调用总结(结合trap机制) traptrap机制trap代码流程Backtrace实验alarm实验 系统调用 相关理论 隔离性(isolation)…

Docker文件夹上传秘籍Windows下的高效传输之道

哈喽,大家好,我是木头左! 一、理解Docker容器与Windows文件系统的差异 在深入探讨如何从 Windows 系统将文件夹及递归文件夹和文件上传到 Docker 容器之前,有必要先明晰 Docker 容器与 Windows 文件系统之间存在的本质差异。 (一)Docker 容器的文件系统特性 Docker 容…

08 | 实现版本号打印功能

提示: 所有体系课见专栏:Go 项目开发极速入门实战课;欢迎加入 云原生 AI 实战 星球,12 高质量体系课、20 高质量实战项目助你在 AI 时代建立技术竞争力(聚焦于 Go、云原生、AI Infra);本节课最终…

在微信小程序或前端开发中,picker 和 select 都是用户交互中用于选择的组件,但它们在功能、设计和使用场景上有一定的区别

在微信小程序或前端开发中,picker 和 select 都是用户交互中用于选择的组件,但它们在功能、设计和使用场景上有一定的区别。 1. picker 的特点 描述: picker 是微信小程序中的原生组件,通常用于选择单项或多项值,如时…

PMP 证书的含金量怎么样?

pmp含金量,这是一个很有争议的话题,我根据我以往的面试跟工作经历对 PMP 也有几点看法,想跟大家聊一聊。 一、如果真心想做项目管理,PMP 一定要去考一个 现在的早已不是凭经验做项目的时代了,各大企业都追求专业式的…

Springboot连接neo4j

​一、Spring Data Neo4j 核心知识体系 ​1. 核心概念 ​图数据库特性: 数据以 ​节点(Node)​ 和 ​关系(Relationship)​ 形式存储,支持属性(Property)。查询语言:Cyp…