利用ETL工具进行数据挖掘

ETL的基本概念


数据抽取(Extraction):从不同源头系统中获取所需数据的步骤。比如从mysql中拿取数据就是一种简单的抽取动作,从API接口拿取数据也是。

数据转换(Transformation):清洗、整合和转化原始数据以适应目标存储或分析系统的阶段。从mysql中拿到数据之后对数据进行处理,像对数据的一些修改,删除,新增都算是,学过编程的同学应该很容易理解。

数据加载(Loading):将经过处理的数据载入到数据仓库或其他目标平台的过程。这个就更简单了,就是将数据加载到目标系统里去,这个系统可以是一个接口,可以是一个数据库,可以是一个平台。

ETL在数据挖掘中的作用

  • 预处理与清洗:去除无关数据,填充缺失值,统一数据格式等。
  • 结构化处理:通过ETL将非结构化或半结构化数据转化为便于挖掘的结构化数据。

        其中非结构化或半结构化数据是指那些不符合传统关系数据库严格定义格式的数据类型。非结构化数据通常没有预定义的数据模型,如文本文件、电子邮件、社交媒体帖子、图片、音频和视频等,这些数据的内部结构各异,难以直接通过数据库表格进行管理和分析。而半结构化数据则具有某种层次性或自我描述性的结构,但不遵循固定模式,例如XML、JSON文件,它们包含标签或者键值对形式的数据,比非结构化数据更易于处理,但仍需要特殊的方法和技术来提取和解析其中的有效信息。

  • 数据集成:跨多个源系统集成相关数据,为后续的数据挖掘提供全面信息。

ETL数据挖掘的具体实现方式

数据抽取阶段的数据挖掘准备

  • 定义数据源及抽取策略:选择对数据挖掘有价值的数据源并制定合理的抽取规则
  • 特征选取:在抽取过程中识别和提取关键业务指标作为挖掘特征

数据转换阶段的数据预处理与优化

  • 数据质量评估与提升:实施数据去重、异常值检测与处理等操作
  • 特征工程:构建衍生变量、进行特征编码、降维等技术以优化数据集用于挖掘任务

数据加载阶段的数据组织与利用

  • 目标数据集市构建:基于挖掘目标设计数据模型并组织加载后的数据
  • 数据索引与分区:提高大规模数据查询和挖掘效率

ETL工具选择

  1. ETLCloud数据挖掘方式实操简单

从Excel和MySQL中抽取数据然后清洗转换、分离,分别输出到两个数据库里

先配置Excel文件读取,注意输入字段配置

库表输入组件,sql语句可以自定义,输入字段可以自行增多或减少

比如增加一个test字段,设定缺省值,后面节点就可以拿到该字段的值,新增的字段并不会修改数据库

双流合并基础配置,需注意关联条件配置,最后两个是对字段名的数量进行设置,选择想要的字段

其中路由线的设置,这个要注意一点,两条线都需要数据可选择全复制

数据过滤组件,选择过滤payment_method值为Credit Card的数据

字段映射组件,目标字段是我表里没有的,是一个新增字段

库表输出,输出字段从其他组件那边获取就行,选择自动建表,数据会直接入库

有分支的流程在结束节点要选择

2.流程成功运行率高

3.数据预览清晰

最后


       在实际应用中,ETLCloud展现了其高效的数据抽取能力,无论是从关系型数据库如MySQL,还是非结构化数据源如Excel文件,都能轻松实现数据提取。其灵活的数据转换功能强大,支持诸如去重、异常值检测、特征构建等深度预处理操作,极大地优化了数据集的质量和挖掘效率。       

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/69333.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

超详细UE4(虚幻4)第一人称射击(FPS)游戏制作教程

超详细UE4(虚幻4)第一人称射击(FPS)游戏制作教程 引言 在游戏开发领域,第一人称射击(FPS)游戏一直是最受欢迎的类型之一。从经典的《反恐精英》(CS)到现代的《使命召唤》(Call of Duty),FPS游戏凭借其紧张刺激的游戏体验和高度沉浸感,吸引了无数玩家。如果你是一…

MySQL数据库(五)索引

一 索引概述 1 介绍:MySQL索引是一种有序数据结构,它能够高效帮助数据库系统快速定位到表中的特定记录,从而显著提高查询效率。索引可以被看作是书的目录,通过它可以迅速找到所需的信息而不需要逐页翻阅整本书。 2 优缺点 二 索…

LeetCode 5

最长回文子串 动态规划 d p [ i ] [ j ] d p [ i 1 ] [ j − 1 ] a n d s [ i ] s [ j ] dp[i][j] dp[i1][j-1] \ \ and \ \ s[i]s[j] dp[i][j]dp[i1][j−1] and s[i]s[j] 长串依赖短串的状态。 所以枚举长度的时候从大到小。 const int N 1010; class Solu…

让文物“活”起来,以3D数字化技术传承文物历史文化!

文物,作为不可再生的宝贵资源,其任何毁损都是无法逆转的损失。然而,当前文物保护与修复领域仍大量依赖传统技术,同时,文物管理机构和专业团队的力量相对薄弱,亟需引入数字化管理手段以应对挑战。 积木易搭…

一文解释nn、nn.Module与nn.functional的用法与区别

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀零基础入门PyTorch框架_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 …

HAL库外设宝典:基于CubeMX的STM32开发手册(持续更新)

目录 前言 GPIO(通用输入输出引脚) 推挽输出模式 浮空输入和上拉输入模式 GPIO其他模式以及内部电路原理 输出驱动器 输入驱动器 中断 外部中断(EXTI) 深入中断(内部机制及原理) 外部中断/事件控…

mac 安装 dotnet 环境

目录 一、安装准备 二、安装方法(两种任选) 方法 1:使用官方安装包(推荐新手) 方法 2:使用 Homebrew(适合开发者) 1. 安装 Homebrew(如未安装) 2. 通过 …

ChatGPT怎么回事?

纯属发现,调侃一下~ 这段时间deepseek不是特别火吗,尤其是它的推理功能,突发奇想,想用deepseek回答一些问题,回答一个问题之后就回复服务器繁忙(估计还在被攻击吧~_~) 然后就转向了GPT&#xf…

结合深度学习、自然语言处理(NLP)与多准则决策的三阶段技术框架,旨在实现从消费者情感分析到个性化决策

针对电商个性化推荐场景的集成机器学习和稳健优化三阶段方案。 第一阶段:在线评论数据处理,利用深度学习和自然语言处理技术进行特征挖掘,进而进行消费者情感分析,得到消费者偏好 在第一阶段,我们主要关注如何通过深度学习和自然语…

GrassWebProxy

GrassWebProxy第一版: using System; using System.Collections.Generic; using System.Linq; using System.Net.Sockets; using System.Net; using System.Text; using System.Threading; using System.Threading.Tasks; using System.IO; using Newtonsoft.Json;…

Websocket从原理到实战

引言 WebSocket 是一种在单个 TCP 连接上进行全双工通信的网络协议,它使得客户端和服务器之间能够进行实时、双向的通信,既然是通信协议一定要从发展历史到协议内容到应用场景最后到实战全方位了解 发展历史 WebSocket 最初是为了解决 HTTP 协议在实时…

[LeetCode]day16 242.有效的字母异位词

242. 有效的字母异位词 - 力扣(LeetCode) 题目描述 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的 字母异位词 示例 1: 输入: s "anagram", t "nagaram" 输出: true示例 2: 输入: s "rat"…

计算机考研复试上机02

目录 3、排序 1)排序(华中科技大学复试上机题) 2)成绩排序(清华大学复试上机题) 3)特殊排序(华中科技大学复试上机题) 4)整数奇偶排序(北京大学复试上机题) 5)小白鼠排队(北京大学复试上机题) 4、查找 1)找 x(哈尔滨工业大学复试上机题) 2)查找(北…

UnityShader学习笔记——动态效果

——内容源自唐老狮的shader课程 目录 1.原理 2.Shader中内置的时间变量 3.Shader中经常会改变的数据 4.纹理动画 4.1.背景滚动 4.1.1.补充知识 4.1.2.基本原理 4.2.帧动画 4.2.1.基本原理 5.流动的2D河流 5.1.基本原理 5.2.关键步骤 5.3.补充知识 6.广告牌效果 …

MySQL万能备份脚本

此脚本适用于 MySQL 各个生命周期的版本 #!/bin/bash # mybackup.sh# 备份保留天数,建议保留三天 days7 # 备份时间 time$(date %Y%m%d%H%M%S) # 备份保存路径 backup_dir/opt/backup # 备份工具 toolmysqldump # 端口 port"3306" # 是否采用 --all-data…

【Redis keys命令有什么问题?】

Redis keys命令有什么问题? 性能问题实际使用中的限制替代方案示例讲解Redis keys命令的问题示例替代方案:使用SCAN命令Java代码示例性能问题 时间复杂度:keys命令的时间复杂度是O(n),其中n是Redis中键的总数。这意味着,当Redis中存储的键数量非常大时,执行keys命令会遍历…

Python用langchain、OpenAI大语言模型LLM情感分析苹果股票新闻数据及提示工程优化应用...

全文链接:https://tecdat.cn/?p39614 本文主要探讨了如何利用大语言模型(LLMs)进行股票分析。通过使用提供的股票市场和金融新闻获取数据,结合Python中的相关库,如Pandas、langchain等,实现对股票新闻的情…

第19章 Future设计模式(Java高并发编程详解:多线程与系统设计)

1.先给你一张凭据 假设有个任务需要执行比较长的的时间,通常需要等待任务执行结束或者出错才能返回结果, 在此期间调用者只能陷入阻塞苦苦等待, 对此, Future设计模式提供了一种凭据式的解决方案。在我们日常生活中,关…

v-for 为什么加 key?不加 key 会怎么样?

在 Vue.js 中,v-for 指令用于渲染列表。当使用 v-for 渲染列表时,通常推荐为每个项目提供一个唯一的 key 属性。以下是为什么要加 key 以及不加 key 会发生什么的详细说明: 为什么要加 key 提高性能: Vue.js 在渲染列表时,会根据 key 来追踪每个节点的身份。当节点的 key…

[Android] 全球网测-版本号4.3.8

[Android] 全球网测 链接:https://pan.xunlei.com/s/VOIV5G3_UOFWnGuMQ_GlIW2OA1?pwdfrpe# 应用介绍 "全球网测"是由中国信通院产业与规划研究所自主研发的一款拥有宽带测速、上网体验和网络诊断等功能的综合测速软件。APP突出六大亮点优势&#xff1a…