最长回文子串
====================================================================
d p [ i ] [ j ] = d p [ i + 1 ] [ j − 1 ] a n d s [ i ] = = s [ j ] dp[i][j] = dp[i+1][j-1] \ \ and \ \ s[i]==s[j] dp[i][j]=dp[i+1][j−1] and s[i]==s[j]
长串依赖短串的状态。
所以枚举长度的时候从大到小。
const int N = 1010;
class Solution {
public:
string longestPalindrome(string s) {
string ans = “”;
int maxLen = 0, n = s.size();
bool dp[N][N];
for(int len = 1; len <= n ; len ++ ) {
for(int i = 0; i + len -1 < n ; i++ ) {
int j = i + len - 1;
if(len == 1){
dp[i][j] = 1;
}else if(len == 2){
dp[i][j] = s[i] == s[j];
}else{
dp[i][j] = dp[i+1][j-1] && s[i]==s[j];
}
if(dp[i][j] && len > maxLen){
maxLen = len;
ans = s.substr(i,len);
}
}
}
return ans;
}
};
==========================================================================
class Solution {
public:
pair<int, int> expandAroundCenter(const string& s, int left, int right) {
while (left >= 0 && right < s.size() && s[left] == s[right]) {
–left;
++right;
}
return {left + 1, right - 1};
}
string longestPalindrome(string s) {
int start = 0, end = 0;
for (int i = 0; i < s.size(); ++i) {
auto [left1, right1] = expandAroundCenter(s, i, i);
auto [left2, right2] = expandAroundCenter(s, i, i + 1);
if (right1 - left1 > end - start) {
start = left1;
end = right1;
}
if (right2 - left2 > end - start) {
start = left2;
end = right2;
}
}
return s.substr(start, end - start + 1);
}
};
// 作者:LeetCode-Solution
// 链接:https://leetcode-cn.com/problems/longest-palindromic-substring/solution/zui-chang-hui-wen-zi-chuan-by-leetcode-solution/
// 来源:力扣(LeetCode)
// 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
==========================================================================
利用这个过程的单调性,所以可以二分解决,为了快速判断一个串是否是回文串,可以使用字符串hash。实际上是对上面方法的优化。
时间复杂度: O ( n ∗ l o g ( n ) ) O(n*log(n)) O(n∗log(n))
class Solution {
public:
typedef unsigned long long ull;
const static int P = 1e9+7, N = 1010;
ull h1[N] = {0}, h2[N] = {0}, p[N] = {1};
string ans;
int maxlen,n;
string longestPalindrome(string s) {
maxlen = 0, n = s.size();
s = " "+s;
// 求正反字符串hash
for(int i=1;i<=n;i++){
h1[i] = h1[i-1]*P + (s[i]-‘0’+1);
h2[n-i+1] = h2[n-i+2]*P + (s[n-i+1]-‘0’+1);
p[i] = p[i-1]*P;
}
// 奇回文
for(int i = 1; i <= n ; i ++ ){
int l = 0 , r = min(i-1,n-i);
while(l<r){
int mid = l+(r-l+1)/2;
bool f = checkPalindrome(i-mid,i+mid);
if(f){
l = mid;
}else{
r = mid - 1;
}
}
if(2*l+1 > maxlen){
maxlen = 2*l+1;
ans = s.substr(i-l,2*l+1);
}
}
// 偶回文
for(int i = 2; i <= n ; i++ ){
int l = 1 , r = min(i-1,n-i+1);
while(l<r){
int mid = l+(r-l+1)/2;
bool f = checkPalindrome(i-mid,i+mid-1);
if(f){
l = mid;
}else{
r = mid - 1;
}
}
if(2*l > maxlen && checkPalindrome(i-l,i+l-1)){
maxlen = 2*l;
ans = s.substr(i-l,2*l);
}
}
return ans;
}
// 根据字符串hash值判断字符串是否相等
bool checkPalindrome(int l,int r){
if(r>n) return false;
ull hash1 = h1[r] - h1[l-1]*p[r-l+1];
ull hash2 = h2[l] - h2[r+1]*p[r-l+1];
return hash1 == hash2;
}
};
==========================================================================
class Solution {
public:
string longestPalindrome(string s) {
string str = divide(s);
int strlen = str.size(), maxLen = 0, start = 0;
// manacher算法中最重要的三个量
vector p(strlen,0);
int maxRight = 0, center = 0;
for(int i = 0;i < strlen ; i++) {
int mirror = 2*center - i;
if(i < maxRight){