从零开始实现一个双向循环链表:C语言实战

文章目录

  • 1链表的再次介绍
  • 2为什么选择双向循环链表?
  • 3代码实现:从初始化到销毁
    • 1. 定义链表节点
    • 2. 初始化链表
    • 3. 插入和删除节点
    • 4. 链表的其他操作
    • 5. 打印链表和判断链表是否为空
    • 6. 销毁链表
  • 4测试代码
  • 5链表种类介绍
  • 6链表与顺序表的区别
  • 7存储金字塔
    • L0: 寄存器
    • L1: 高速缓存(SRAM)
    • L2: 高速缓存(SRAM)
    • L3: 高速缓存(SRAM)
    • L4: 主存(DRAM)
    • L5: 本地二级存储(本地磁盘)
    • L6: 远程二级存储
    • 缓存利用率与局部性原理:
  • 8书籍推荐《深入理解计算机系统》
  • 9新年快乐,代码相伴

1链表的再次介绍

在计算机科学中,链表是一种常见的数据结构,它通过节点之间的指针连接来存储数据。链表有许多变种,其中双向循环链表因其独特的结构而备受关注。今天,我们将通过C语言实现一个双向循环链表,并探讨其核心操作。无论你是数据结构的新手,还是想巩固基础的老手,这篇文章都将为你提供实用的知识和代码示例。
链接: 单链表介绍

2为什么选择双向循环链表?

双向循环链表是一种特殊的链表,它的每个节点都有两个指针:一个指向前一个节点,另一个指向后一个节点。与单向链表不同,双向链表可以从任意一个节点向前或向后遍历。而循环链表的特点是其尾节点指向头节点,形成一个闭环。这种结构在某些场景下非常有用,比如实现高效的队列或缓存机制。

3代码实现:从初始化到销毁

1. 定义链表节点

首先,我们需要定义链表节点的结构。每个节点包含三个部分:

data:存储节点的数据。

next:指向下一个节点的指针。

prev:指向前一个节点的指针。

typedef int LTDataType;typedef struct ListNode
{struct ListNode* next;struct ListNode* prev;LTDataType data;
} LTNode;

2. 初始化链表

链表的初始化是创建一个头节点,并将其next和prev指针指向自己,形成一个空的双向循环链表。

LTNode* BuyListNode(LTDataType x)
{LTNode* New = (LTNode*)malloc(sizeof(LTNode));if (New == NULL){perror("malloc");exit(-1);}New->next = NULL;New->prev = NULL;New->data = x;return New;
}
LTNode* LTInit()
{LTNode* phead = BuyListNode(-1); // 创建头节点phead->next = phead;phead->prev = phead;return phead;
}

3. 插入和删除节点

在双向循环链表中,插入和删除节点是非常高效的操作。我们可以在任意位置插入或删除节点,只需调整相邻节点的指针即可。

插入节点

void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* prev = pos->prev;LTNode* new = BuyListNode(x);prev->next = new;new->prev = prev;new->next = pos;pos->prev = new;
}

删除节点

void LTErase(LTNode* pos)
{assert(pos);LTNode* prev = pos->prev;LTNode* next = pos->next;prev->next = next;next->prev = prev;free(pos);
}

4. 链表的其他操作

我们还实现了一些常见的链表操作,如LTPushBack(在链表尾部插入节点)、LTPopBack(删除链表尾部节点)、LTPushFront(在链表头部插入节点)和LTPopFront(删除链表头部节点)。这些操作都依赖于LTInsert和LTErase函数。

void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTInsert(phead, x);
}void LTPopBack(LTNode* phead)
{assert(phead);LTErase(phead->prev);
}void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTInsert(phead->next, x);
}void LTPopFront(LTNode* phead)
{assert(phead);LTErase(phead->next);
}

5. 打印链表和判断链表是否为空

为了方便调试和观察链表的状态,我们实现了LTPrint函数来打印链表中的所有节点数据。此外,LTEmpty函数用于判断链表是否为空。

void LTPrint(LTNode* phead)
{assert(phead);LTNode* cur = phead->next;printf("<=phead=>");while (cur != phead){printf("%d<=>", cur->data);cur = cur->next;}puts("");
}bool LTEmpty(LTNode* phead)
{assert(phead);return phead == phead->next;
}

6. 销毁链表

在使用完链表后,我们需要释放所有节点的内存,避免内存泄漏。

void LTDestroy(LTNode* phead)
{assert(phead);LTNode* cur = phead->next;while (cur != phead){LTNode* next = cur->next;free(cur);cur = next;}free(phead);
}

4测试代码

为了验证我们的双向循环链表实现是否正确,我们编写了一个简单的测试函数Test1。在这个函数中,我们进行了多次插入、删除操作,并打印链表的状态。

void Test1()
{LTNode* phead = LTInit();LTPushBack(phead, 2);LTPushBack(phead, 1);LTPushFront(phead, 5);LTPrint(phead);LTInsert(phead->next, 6);LTInsert(phead->next, 6);LTPushFront(phead, 6);LTPrint(phead);LTPopBack(phead);LTPopBack(phead);LTPopFront(phead);LTErase(phead->next);LTPrint(phead);LTPushBack(phead, 4);LTPushBack(phead, 3);LTPushBack(phead, 2);LTPushBack(phead, 1);LTPrint(phead);printf("%d\n", LTEmpty(phead));LTDestroy(phead);phead = LTInit();printf("%d\n", LTEmpty(phead));
}int main()
{Test1();return 0;
}

5链表种类介绍

在这里插入图片描述
在这里插入图片描述

6链表与顺序表的区别

在这里插入图片描述

7存储金字塔

在这里插入图片描述
这张图片展示了计算机存储体系的层级结构,通常被称为存储金字塔(Memory Hierarchy)。它描述了不同层级的存储设备从最快速但成本最高到最慢但成本最低的分布情况。每一层级的存储设备都具有不同的访问速度和成本,它们相互配合,以实现性能和成本的最佳平衡。
存储金字塔层级介绍:

L0: 寄存器

位于金字塔的顶端,是CPU内部的寄存器,提供最快的数据访问速度。
寄存器的数量有限,因此它们用于存储最频繁访问的数据。

L1: 高速缓存(SRAM)

位于寄存器下方,是CPU的一级缓存,使用静态随机存取存储器(SRAM)。
L1缓存分为两个部分:L1指令缓存(L1-I)和L1数据缓存(L1-D),分别用于存储指令和数据。

L2: 高速缓存(SRAM)

二级缓存通常集成在CPU芯片上,或者在某些设计中位于CPU芯片附近。
L2缓存比L1缓存大,但访问速度稍慢。

L3: 高速缓存(SRAM)

三级缓存是更大但速度较慢的缓存层级,通常位于CPU芯片外。
L3缓存为多个核心共享,用于减少核心之间的数据访问延迟。

L4: 主存(DRAM)

主存储器,即动态随机存取存储器(DRAM),是计算机的主要内存。
与缓存相比,主存的访问速度较慢,但容量更大,成本更低。

L5: 本地二级存储(本地磁盘)

本地磁盘,如硬盘驱动器(HDD)或固态硬盘(SSD),用于长期存储数据。
访问速度比主存慢得多,但存储容量更大,成本更低。

L6: 远程二级存储

远程存储,如分布式文件系统、网络附加存储(NAS)或Web服务器,提供更大的存储空间。
访问速度最慢,但可以提供几乎无限的存储容量。

缓存利用率与局部性原理:

缓存利用率:指的是缓存中存储的数据被访问的频率。高缓存利用率意味着更多的数据访问可以直接从缓存中获取,从而提高系统性能。
局部性原理:包括时间局部性和空间局部性。时间局部性指的是最近访问过的数据很可能在不久的将来再次被访问;空间局部性指的是如果一个数据被访问,那么它附近的数据也很可能被访问。缓存的设计就是基于这些原理,以提高缓存利用率。

8书籍推荐《深入理解计算机系统》

链接: 书籍介绍

9新年快乐,代码相伴

在这个充满希望的新年里,愿你的代码之旅充满乐趣和挑战。无论是探索数据结构的奥秘,还是深入理解计算机系统的运行机制,都希望你能收获满满。让我们一起在代码的世界里,继续探索、学习和成长,用代码书写属于自己的精彩篇章。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/69090.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Cesium点集中获取点的id,使用viewer.value.entities.getById报错的解决方法

错误代码&#xff1a; viewer.value.entities.getById(pickedObject.id) 报错&#xff1a; 可以正常获取movement.position但是一直出现如下报错&#xff0c;无法获得航点的id&#xff0c;通过断点定位为 viewer.value.entities.getById(pickedObject.id)导致的报错 解决方…

java 进阶教程_Java进阶教程 第2版

第2版前言 第1版前言 语言基础篇 第1章 Java语言概述 1.1 Java语言简介 1.1.1 Java语言的发展历程 1.1.2 Java的版本历史 1.1.3 Java语言与C&#xff0f;C 1.1.4 Java的特点 1.2 JDK和Java开发环境及工作原理 1.2.1 JDK 1.2.2 Java开发环境 1.2.3 Java工作原理 1.…

ARM Linux Qt使用JSON-RPC实现前后台分离

文章目录 1、前言2、解决方案2.1、JSON-RPC2.2、Qt中应用JSON-RPC的框架图2.3、优点2.4、JSON-RPC 1.0 协议规范 3、程序示例3.1、Linux C&#xff08;只例举RPC Server相关程序&#xff09;3.2、Qt程序&#xff08;只例举RPC Client相关程序&#xff09; 4、编译程序4.1、交叉…

PyQt6/PySide6 的 QMainWindow 类

QMainWindow 是 PyQt6 或 PySide6 库中一个非常重要的类&#xff0c;它提供了一个主窗口应用程序的框架&#xff0c;该框架可以包含菜单栏、工具栏、状态栏以及中心部件等。QMainWindow 为 GUI 应用程序提供了基本的结构和布局管理功能&#xff0c;非常适合用来创建复杂的用户界…

9. k8s二进制集群之kube-controller-manager部署

同样在部署主机上创建证书请求文件(为之后的证书生成做准备)根据上面的证书文件创建证书(结果会在当前目录下产生kube-controller-manager证书)创建kube-controller-manager服务配置文件创建kube-controller-manager服务启动文件同步kube-controller-manager证书到对应mast…

教程 | i.MX RT1180 ECAT_digital_io DEMO 搭建(一)

本文介绍 i.MX RT1180 EtherCAT digital io DEMO 搭建&#xff0c;Master 使用 TwinCAT &#xff0c;由于步骤较多&#xff0c;分为上下两篇&#xff0c;本文为第一篇&#xff0c;主要介绍使用 TwinCAT 控制前的一些准备。 原厂 SDK 提供了 evkmimxrt1180_ecat_examples_digit…

ubuntu22.40安装及配置静态ip解决重启后配置失效

遇到这种错误&#xff0c;断网安装即可&#xff01; 在Ubuntu中配置静态IP地址的步骤如下。根据你使用的Ubuntu版本&#xff08;如 Netplan 或传统的 ifupdown&#xff09;&#xff0c;配置方法有所不同。以下是基于 Netplan 的配置方法&#xff08;适用于Ubuntu 17.10及更高版…

服务端渲染技术

一.JSP 1.jsp介绍,全称是java Server Pages ,java服务器页面,就是服务端渲染技术,html只能为用户提供静态数据,而JSP技术允许在页面中嵌套 java代码,jsp技术基于Servlet,Servlet很难对数据进行排版,而jsp就可以,可以理解为jsp就是对Servlet的包装. 2.jsp程序本质是java程序,无…

[23] cuda应用之 nppi 实现图像缩放

[23] cuda应用之 nppi 实现图像缩放 NPP&#xff08;NVIDIA Performance Primitives&#xff09;是一个由 NVIDIA 提供的库&#xff0c;专门用于加速图像和信号处理任务。NPP 提供了许多高效的图像处理函数&#xff0c;包括图像缩放。使用 NPP 实现图像缩放可以充分利用 GPU 的…

【产品经理学习案例——AI翻译棒出海业务】

前言&#xff1a; 本文主要讲述了硬件产品在出海过程中&#xff0c;翻译质量、翻译速度和本地化落地策略是硬件产品规划需要考虑的核心因素。针对不同国家&#xff0c;需要优化翻译质量和算法&#xff0c;关注市场需求和文化差异&#xff0c;以便更好地满足当地用户的需求。同…

CH340G上传程序到ESP8266-01(S)模块

文章目录 概要ESP8266模块外形尺寸模块原理图模块引脚功能 CH340G模块外形及其引脚模块引脚功能USB TO TTL引脚 程序上传接线Arduino IDE 安装ESP8266开发板Arduino IDE 开发板上传失败上传成功 正常工作 概要 使用USB TO TTL&#xff08;CH340G&#xff09;将Arduino将程序上传…

1.4 Go 数组

一、数组 1、简介 数组是切片的基础 数组是一个固定长度、由相同类型元素组成的集合。在 Go 语言中&#xff0c;数组的长度是类型的一部分&#xff0c;因此 [5]int 和 [10]int 是两种不同的类型。数组的大小在声明时确定&#xff0c;且不可更改。 简单来说&#xff0c;数组…

AI推理性能之王-Groq公司开发的LPU芯片

Groq公司开发的LPU&#xff08;Language Processing Unit&#xff0c;语言处理单元&#xff09;芯片是一种专为加速大规模语言模型&#xff08;LLM&#xff09;和其他自然语言处理任务而设计的新型AI处理器。以下是对其技术特点、性能优势及市场影响的深度介绍&#xff1a; 技…

C#中的委托(Delegate)

什么是委托? 首先,我们要知道C#是一种强类型的编程语言,强类型的编程语言的特性,是所有的东西都是特定的类型 委托是一种存储函数的引用类型,就像我们定义的一个 string str 一样,这个 str 变量就是 string 类型. 因为C#中没有函数类型,但是可以定义一个委托类型,把这个函数…

rk3506 sd卡启动

1 修改系统配置文件,打开ext4 #SDMMC RK_ROOTFS_TYPE"ext4" RK_ROOTFS_INSTALL_MODULESy RK_WIFIBT_CHIP"AIC8800" # RK_ROOTFS_LOG_GUARDIAN is not set RK_UBOOT_CFG_FRAGMENTS"rk3506_tb" RK_UBOOT_SPLy RK_KERNEL_CFG"rk3506_defconfi…

2025春招,深度思考MyBatis面试题

大家好&#xff0c;我是V哥&#xff0c;2025年的春招马上就是到来&#xff0c;正在准备求职的朋友过完年&#xff0c;也该收收心&#xff0c;好好思考一下自己哪些技术点还需要补一补了&#xff0c;今天 V 哥要跟大家聊的是MyBatis框架的问题&#xff0c;站在一个高级程序员的角…

Docker 安装详细教程(适用于CentOS 7 系统)

目录 步骤如下&#xff1a; 1. 卸载旧版 Docker 2. 配置 Docker 的 YUM 仓库 3. 安装 Docker 4. 启动 Docker 并验证安装 5. 配置 Docker 镜像加速 总结 前言 Docker 分为 CE 和 EE 两大版本。CE即社区版&#xff08;免费&#xff0c;支持周期7个月&#xff09;&#xf…

AWS门店人流量数据分析项目的设计与实现

这是一个AWS的数据分析项目&#xff0c;关于快消公司门店手机各个门店进店人流量和各个产品柜台前逗留时间&#xff08;利用IoT设备采集&#xff09;和销售数据之间的统计分析&#xff0c;必须用到但不限于Amazon Kensis Data Stream&#xff0c;Spark Streaming&#xff0c;Sp…

【玩转 Postman 接口测试与开发2_017】第13章:在 Postman 中实现契约测试(Contract Testing)与 API 接口验证(下)

《API Testing and Development with Postman》最新第二版封面 文章目录 第十三章 契约测试与 API 接口验证8 导入官方契约测试集合9 契约测试集合的详细配置9.1 env-apiKey 的创建与设置9.2 env-workspaceId 的设置9.3 Mock 服务器及 env-server 的配置9.4 API 测试实例的配置…

使用DeepSeek R1 + 了解部署

官网注册 R1模型&#xff0c;推理模型 参考视频理解 理解大语言模型的本质 大模型在训练时是将内容token化的大模型知识是存在截止时间的大模型缺乏自我认知、自我意识记忆有限输出长度有限 智商理解&#xff0c;例如下面的DeepSeek的测试&#xff1a; 用DeepSeek 官网手…