AWS门店人流量数据分析项目的设计与实现

这是一个AWS的数据分析项目,关于快消公司门店手机各个门店进店人流量和各个产品柜台前逗留时间(利用IoT设备采集)和销售数据之间的统计分析,必须用到但不限于Amazon Kensis Data Stream,Spark Streaming,Spark mllib,Kafka,S3和Redshift。
门店进店人数与各产品柜台前逗留时间受多方面因素的影响,需要综合考虑并采取相应的措施来提升。已知门店进店人数与各产品柜台前逗留时间主要与以下因素有关:

门店进店人数

  1. 门店地段与曝光度:门店所在的地段决定了其曝光次数,进而影响进店人数。地段繁华、人流量大的地方,门店曝光度高,进店人数相对较多。

  2. 品牌知名度:知名品牌或加盟店往往能吸引更多顾客,因为顾客对品牌有一定的信任和认可度。

  3. 门店外观与吸引力:包括门店的装修、招牌、灯光、整洁度等,这些因素直接影响顾客对门店的第一印象,从而决定其是否愿意进店。

  4. 促销活动与氛围:门店的促销活动、氛围营造(如热闹程度、导购试穿和销售演练等)也能吸引顾客进店。

  5. 竞争对手情况:周边竞争对手的数量和实力也会影响门店的进店人数。

6.当天天气的舒适度和是否是节假日或大型节庆或活动。

7.是否明星代言期间,以及明星或公司的的新闻热度上升期间。

各产品柜台前逗留时间

  1. 产品陈列与布局:产品陈列是否整齐、有序,是否能吸引顾客注意,以及柜台布局是否合理,都会影响顾客在柜台前的逗留时间。

  2. 商品种类与差异化:商品是否适销对路,即是否满足顾客需求,以及商品的差异化程度,也会影响顾客的逗留时间。如果商品种类丰富、差异化明显,顾客会更愿意花费时间挑选。

  3. 价格因素:价格是否合理、是否具有竞争力,也会影响顾客在柜台前的决策时间和逗留时间。

  4. 员工服务态度与专业度:员工的服务态度、专业度以及能否及时、准确地解答顾客疑问,都会影响顾客的购物体验和逗留时间。

  5. 店内环境与氛围:店内整体环境是否舒适、氛围是否愉悦,也会影响顾客的逗留时间。例如,通风性良好、空间配置合理的店铺能提升顾客的洄游性,延长逗留时间。

  6. 动线规划:有计划的动线规划可以引导顾客在卖场中的前进步伐,让顾客更加全面地浏览店铺商品,从而延长逗留时间。

  7. 营销手段与试用场景:如氛围道具的布置、试用场景的搭建等,能增强顾客的购物体验,提升其对产品的兴趣和购买欲望,从而延长逗留时间。

以下架构可以每小时处理超过百万级的传感器事件,支持亚秒级的实时指标计算,同时能够处理PB级的历史数据分析需求。关键业务指标(如促销期间的转化率变化)可以实现分钟级延迟的实时监控。这是一个基于AWS的实时数据分析系统架构,以下是详细的方案:

系统架构图

[IoT传感器] --> [Kinesis Data Stream]
[POS系统] --> [Kafka]↓
[Kinesis Firehose] --> [S3 Raw Zone]↓
[Spark Streaming on EMR] --> [S3 Processed Zone]↓
[Glue ETL] --> [Redshift]↓
[QuickSight] <--> [ML模型服务]

技术栈组合

  1. 数据采集层:IoT传感器 + AWS IoT Core + Kinesis Data Stream
  2. 消息队列:MSK Managed Streaming for Kafka
  3. 实时计算:EMR Spark Streaming (Python)
  4. 批处理:Glue + EMR Spark
  5. 机器学习:Spark MLlib + SageMaker
  6. 存储:S3 (数据湖) + Redshift (数据仓库)
  7. 可视化:QuickSight
  8. 元数据管理:Glue Data Catalog
  9. 数据治理:Lake Formation

实施步骤

第一阶段:数据采集与传输
  1. IoT设备部署:
# 传感器数据示例(Python伪代码)
import boto3
import jsonkinesis = boto3.client('kinesis')def send_sensor_data():data = {"store_id": "ST001","timestamp": "2023-08-20T14:30:00Z","sensor_type": "foot_traffic","counter_id": "CT001","duration": 45.2, # 逗留时间(秒)"people_count": 3}kinesis.put_record(StreamName="StoreSensorStream",Data=json.dumps(data),PartitionKey="ST001")
  1. Kafka生产者配置(POS销售数据):
from kafka import KafkaProducerproducer = KafkaProducer(bootstrap_servers='kafka-brokers:9092',value_serializer=lambda v: json.dumps(v).encode('utf-8')
)def send_sale_data():sale_data = {"store_id": "ST001","timestamp": "2023-08-20T14:30:05Z","product_id": "P1234","quantity": 2,"amount": 59.98}producer.send('pos-sales', sale_data)
第二阶段:实时处理
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *spark = SparkSession.builder \.appName("RealtimeStoreAnalytics") \.getOrCreate()# 定义IoT数据Schema
iot_schema = StructType([StructField("store_id", StringType()),StructField("timestamp", TimestampType()),StructField("sensor_type", StringType()),StructField("counter_id", StringType()),StructField("duration", DoubleType()),StructField("people_count", IntegerType())
])# 从Kinesis读取数据
iot_stream = spark.readStream \.format("kinesis") \.option("streamName", "StoreSensorStream") \.option("initialPosition", "LATEST") \.load() \.select(from_json(col("data").cast("string"), iot_schema).alias("parsed")) \.select("parsed.*")# 实时窗口聚合(5分钟窗口)
windowed_traffic = iot_stream \.groupBy(window("timestamp", "5 minutes"),"store_id") \.agg(sum("people_count").alias("total_visitors"),avg("duration").alias("avg_duration"))# 写入S3处理区
query = windowed_traffic.writeStream \.outputMode("update") \.format("parquet") \.option("path", "s3a://processed-data/store_metrics") \.option("checkpointLocation", "/checkpoint") \.start()
第三阶段:特征工程
from pyspark.ml.feature import VectorAssembler
from pyspark.ml import Pipeline# 构建特征管道
def build_feature_pipeline():assembler = VectorAssembler(inputCols=["total_visitors","avg_duration","holiday_flag","temperature","promo_intensity"],outputCol="features")return Pipeline(stages=[assembler])# 外部数据关联示例
def enrich_with_external_data(df):# 从S3加载天气数据weather = spark.read.parquet("s3a://external-data/weather")# 加载促销日历promotions = spark.read.parquet("s3a://external-data/promotions")return df.join(weather, ["store_id", "date"]) \.join(promotions, ["store_id", "date"], "left")
第四阶段:机器学习建模
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluatordef train_sales_model():# 加载历史数据df = spark.read.parquet("s3a://processed-data/training_dataset")# 拆分数据集train, test = df.randomSplit([0.8, 0.2])# 初始化模型rf = RandomForestRegressor(featuresCol="features",labelCol="sales_amount",numTrees=50,maxDepth=10)# 构建管道pipeline = build_feature_pipeline().setStages([rf])# 训练模型model = pipeline.fit(train)# 评估模型predictions = model.transform(test)evaluator = RegressionEvaluator(labelCol="sales_amount",predictionCol="prediction",metricName="rmse")rmse = evaluator.evaluate(predictions)print(f"Root Mean Squared Error (RMSE): {rmse}")# 保存模型model.save("s3a://ml-models/sales_prediction_v1")return model
第五阶段:数据可视化(QuickSight)
  1. 在Redshift中创建物化视图:
CREATE MATERIALIZED VIEW store_performance AS
SELECT s.store_id,s.location_score,AVG(t.avg_duration) AS avg_duration,SUM(s.sales_amount) AS total_sales,w.weather_condition
FROM store_metrics t
JOIN sales_data s ON t.store_id = s.store_id
JOIN weather_data w ON t.date = w.date
GROUP BY s.store_id, w.weather_condition;

关键创新点

  1. 多源数据融合:整合IoT传感器、POS系统、天气API、促销日历等多维度数据
  2. 实时-离线一体化:Lambda架构实现实时指标计算与离线深度分析结合
  3. 动态特征工程:基于窗口的实时特征计算(滚动5分钟/小时/日聚合)
  4. 可解释性模型:SHAP值分析各因素对销售的影响权重

运维保障措施

  1. 数据质量监控:在Glue中设置数据质量规则
  2. 自动扩缩容:使用EMR自动伸缩策略
  3. 模型监控:SageMaker Model Monitor进行模型漂移检测
  4. 安全控制:Lake Formation进行列级权限管理

性能优化建议

  1. 数据分区:按日期/小时进行S3分区存储
  2. Redshift优化:
    • 使用AQUA加速查询
    • 对经常JOIN的字段设置DISTKEY
  3. Spark调优:
   spark.conf.set("spark.sql.shuffle.partitions", "2000")spark.conf.set("spark.executor.memoryOverhead", "2g")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/69072.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【玩转 Postman 接口测试与开发2_017】第13章:在 Postman 中实现契约测试(Contract Testing)与 API 接口验证(下)

《API Testing and Development with Postman》最新第二版封面 文章目录 第十三章 契约测试与 API 接口验证8 导入官方契约测试集合9 契约测试集合的详细配置9.1 env-apiKey 的创建与设置9.2 env-workspaceId 的设置9.3 Mock 服务器及 env-server 的配置9.4 API 测试实例的配置…

使用DeepSeek R1 + 了解部署

官网注册 R1模型&#xff0c;推理模型 参考视频理解 理解大语言模型的本质 大模型在训练时是将内容token化的大模型知识是存在截止时间的大模型缺乏自我认知、自我意识记忆有限输出长度有限 智商理解&#xff0c;例如下面的DeepSeek的测试&#xff1a; 用DeepSeek 官网手…

2024年12月 Scratch 图形化(三级)真题解析 中国电子学会全国青少年软件编程等级考试

202412 Scratch 图形化&#xff08;三级&#xff09;真题解析 中国电子学会全国青少年软件编程等级考试 一、选择题(共18题&#xff0c;共50分) 第 1 题 气温和对应的穿衣建议如下表所示&#xff0c;下列选项能正确给出穿衣建议的是&#xff1f;&#xff08; &#xff09; A. …

深度学习-100-RAG技术之最简单的RAG系统概念和效果优化提升方向

文章目录 1 数据是基础2 Naive RAG(最简单的RAG系统)2.1 RAG周边技术2.2 标准的RAG流程2.3 RAG的潜在问题2.4 如何应对RAG的问题3 优化方向3.1 原始数据创建/准备3.1.1 易于理解的文本3.1.2 提高数据质量3.2 预检索优化3.2.1 分块优化3.2.2 添加元数据3.2.3 选对嵌入模型3.2.4 …

Gauss高斯:建表语法,存储方式,OLTP和OLAP,系统时间,数组,分组(grouping set,rollup)

数据库和表的语法 数据库 表 oracle,高斯, hive的默认存储方式都是列式存储 存储方式 高斯数据库&#xff08;GaussDB&#xff09;支持列式存储和行式存储 OLTP 与 OLAP OLTP&#xff08;联机事务处理&#xff0c;Online Transaction Processing&#xff09;是一种用于管理…

数据中心服务器对PCIe测试的需求、挑战和应用

人工智能和机器学习技术的迅猛发展&#xff0c;尤其是大语言模型&#xff08;LLM&#xff09;的兴起&#xff0c;对计算资源和数据传输速度提出了更高的要求&#xff0c;从而激发了对更高带宽解决方案的迫切需求。PCIe作为数据中心服务器间互联的主力军&#xff0c;承担着高速数…

(9)下:学习与验证 linux 里的 epoll 对象里的 EPOLLIN、 EPOLLHUP 与 EPOLLRDHUP 的不同。小例子的实验

&#xff08;4&#xff09;本实验代码的蓝本&#xff0c;是伊圣雨老师里的课本里的代码&#xff0c;略加改动而来的。 以下是 服务器端的代码&#xff1a; 每当收到客户端的报文时&#xff0c;就测试一下对应的 epoll 事件里的事件标志&#xff0c;不读取报文内容&#xff0c;…

【C语言篇】“三子棋”

一、游戏介绍 三子棋&#xff0c;英文名为 Tic - Tac - Toe&#xff0c;是一款简单而经典的棋类游戏。游戏在一个 33 的棋盘上进行&#xff0c;两名玩家轮流在棋盘的空位上放置自己的棋子&#xff08;通常用 * 和 # 表示&#xff09;&#xff0c;率先在横、竖或斜方向上连成三个…

wsl+phpstorm+xdebug|windows子系统配置phpstorm开发调试|断点调试

安装wsl 安装apache php 安装xdebug扩展&#xff0c;并配置 这里是通过宝塔9.4面板安装的xdebug3.0 [xdebug] xdebug.modedebug xdebug.start_with_requesttrue xdebug.discover_client_hosttrue xdebug.client_host127.0.0.1配置PHPSTORM 注意&#xff1a;新建服务器一定要…

VSCode源码分析参考资料

VSCode Architecture Analysis - Electron Project Cross-Platform Best Practices 中文版 VSCode 架构分析 - Electron 项目跨平台最佳实践 Sihan Li博客上的vscode源码分析系列&#xff1a;分析了微服务架构、事件体系、资源管理、配置系统等 文召博客上的vscode 源码解析…

20250204将Ubuntu22.04的默认Dash的shell脚本更换为bash

20250204将Ubuntu22.04的默认Dash的shell脚本更换为bash 2025/2/4 23:45 百度&#xff1a;dash bash https://blog.csdn.net/2201_75772333/article/details/136955776 【Linux基础】dash和bash简介 Dash&#xff08;Debian Almquist Shell&#xff09;和 Bash&#xff08;Bou…

Meta财报解读:营收超预期,用户增长放缓,AI与元宇宙仍是烧钱重点

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

如可安装部署haproxy+keeyalived高可用集群

第一步&#xff0c;环境准备 服务 IP 描述 Keepalived vip Haproxy 负载均衡 主服务器 Rip&#xff1a;192..168.244.101 Vip&#xff1a;192.168.244.100 Keepalive主节点 Keepalive作为高可用 Haproxy作为4 或7层负载均衡 Keepalived vip Haproxy 负载均衡 备用服务…

LabVIEW如何有效地进行数据采集?

数据采集&#xff08;DAQ&#xff09;是许多工程项目中的核心环节&#xff0c;无论是测试、监控还是控制系统&#xff0c;准确、高效的数据采集都是至关重要的。LabVIEW作为一个图形化编程环境&#xff0c;提供了丰富的功能来实现数据采集&#xff0c;确保数据的实时性与可靠性…

整个 PVE 系统崩溃后,怎么恢复 PVE 给虚拟机分配的虚拟硬盘中的数据

背景 我有一块 ssd 用于 PVE 系统和 虚拟机 安装&#xff0c;还有一块 HDD 用来存储数据。这个HDD按照 把 PVE 下的机械硬盘&#xff08;非SSD系统盘&#xff09;分配给虚拟机使用 进行挂载和配置。主要过程是 PVE中 “数据中信” -> “存储” -> “添加” -> “目录…

Linux: 网络基础

1.协议 为什么要有协议&#xff1a;减少通信成本。所有的网络问题&#xff0c;本质是传输距离变长了。 什么是协议&#xff1a;用计算机语言表达的约定。 2.分层 软件设计方面的优势—低耦合。 一般我们的分层依据&#xff1a;功能比较集中&#xff0c;耦合度比较高的模块层…

Python sider-ai-api库 — 访问Claude、llama、ChatGPT、gemini、o1等大模型API

目前国内少有调用ChatGPT、Claude、Gemini等国外大模型API的库。 Python库sider_ai_api 提供了调用这些大模型的一个完整解决方案&#xff0c; 使得开发者能调用 sider.ai 的API&#xff0c;实现大模型的访问。 Sider是谷歌浏览器和Edge的插件&#xff0c;能调用ChatGPT、Clau…

STM32 串口发送与接收

接线图 代码配置 根据上一章发送的代码配置&#xff0c;在GPIO配置的基础上需要再配置PA10引脚做RX接收&#xff0c;引脚模式可以选择浮空输入或者上拉输入&#xff0c;在USART配置串口模式里加上RX模式。 配置中断 //配置中断 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE…

猫眼前端开发面试题及参考答案

对网络了解吗&#xff1f;说一下 OSI 七层模型 OSI 七层模型是国际标准化组织&#xff08;ISO&#xff09;制定的一个用于计算机网络通信的概念模型&#xff0c;从下到上依次为&#xff1a; 物理层&#xff1a;主要负责处理物理介质上的信号传输&#xff0c;包括电缆、光纤、无…

Ubuntu 24.04 安装 Poetry:Python 依赖管理的终极指南

Ubuntu 24.04 安装 Poetry&#xff1a;Python 依赖管理的终极指南 1. 更新系统包列表2. 安装 Poetry方法 1&#xff1a;使用官方安装脚本方法 2&#xff1a;使用 Pipx 安装 3. 配置环境变量4. 验证安装5. 配置 Poetry&#xff08;可选&#xff09;设置虚拟环境位置配置镜像源 6…