记6(人工神经网络

目录

  • 1、M-P神经元
  • 2、感知机
  • 3、Delta法则
  • 4、前馈型神经网络(Feedforward Neural Networks)
  • 5、鸢尾花数据集——单层前馈型神经网络:
  • 6、多层神经网络:增加隐含层
  • 7、实现异或运算(01、10为1,00、11为0)
  • 8、线性不可分问题
  • 9、万能近似定理
  • 10、超参数与验证集
  • 11、误差反向传播算法(Backpropagation, BP)

1、M-P神经元

  • M-P神经元:1943,McCulloch,Pitts
    x1,x2,x3…模拟神经元的树突,接受信号,wi表示权重,对输入xi加权求和后与θ比较得到z,再传入阶跃函数得到输出y。但是不具备学习能力。
    在这里插入图片描述

2、感知机

模型和上图一样,输入层xi不需要计算,只有输出层发生计算,层数只有一层。
具备学习能力,有多个解,受权值初始值和错误样本顺序影响。
线性二分类器,对非线性问题无法收敛。

在这里插入图片描述
单个感知机实现二分类问题,多个感知机(就是多个输出)能实现多分类问题(就是前面所说的softmax回归) :
在这里插入图片描述

3、Delta法则

就是前面的逻辑回归,用step()函数或sigmoid()函数,逻辑回归可以看做是单层神经网络

4、前馈型神经网络(Feedforward Neural Networks)

每层只与前一层神经元相连;同一层之间没有连接;各层间没有反馈,不存在跨层连接
全连接网络(Full Connnected Network):前一层(左边)的节点都与后一层(右边)的节点连接,且后一层的节点都接受来自前一层的所有输入。

5、鸢尾花数据集——单层前馈型神经网络:

  • 设计:

结构:单层前馈型神经网络
激活函数:softmax函数;
损失函数:交叉熵损失函数;

  • 实现:如下图,输入是训练集的120条数据,含4条属性/数据,输出是3个标签(独热编码表示为1*3向量),将之前的模型参数W(Y=WX)的第一行参数分离出来,即Y=WX+B(以便实现多层神经网络时更加方便直观)。使用独热编码(见上一篇笔记)
    在这里插入图片描述
  • softmax函数:tf.nn.softmax(tf.matmul(X_train,W)+b)
  • 自然顺序码转化为独热编码(需要先转换为浮点数):tf.one_hot(tf.constant(y_test,dtype=tf.int32),3)
  • 交叉熵损失函数:tf.keras.losses.categorical_crossentropy(y_true,y_pred)
      y_true:独热编码的标签值
      y_pred:softmax函数的输出值
      输出是一个一维张量,其中的每个元素是每个样品的交叉熵损失,因此需要用求平均值函数
  • 设置运行时分配显存(如果出现错误:Blast GEMMlaunch failed:):
gpus=tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:tf.config.experimental.set_memory_growth(gpu,True)

返回张量最大值的索引:tf.argmax(input_tensor,axis=0)(见TensorFlow笔记3)

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#读取文件,详见Python笔记10
train_path=tf.keras.utils.get_file("iris.csv", origin=None)   #获取文件的绝对路径
df_iris=pd.read_csv(train_path,header=0)        #结果是panda的二维数据表
iris=np.array(df_iris)        #将二维数据表类型转化为二维数组类型,shape=(150,6),与视频中不一样,索引号为0的是序号
x=iris[:,1:5]         #索引号1~4列属性:花瓣长度和宽度,x.shape=(150, 2)
y=iris[:,5]          #train_y.shape=(150,)x_svv=np.concatenate((np.stack(x[y=='setosa']),  #选取2种花,以及其前2种属性np.stack(x[y=='versicolor']),np.stack(x[y=='virginica'])),axis=0)
y_svv=np.concatenate((np.zeros(np.where(y=='setosa')[0].size),   #元组只有一个元素(数组)np.ones(np.where(y=='versicolor')[0].size),2*np.ones(np.where(y=='virginica')[0].size),),axis=0)np.random.seed(612)
iris_rand=np.concatenate((x_svv,np.expand_dims(y_svv,axis=1)),axis=1)
np.random.shuffle(iris_rand)        #打乱数组,并选前面120条数据为训练集,后面30条做测试集
x_train=tf.constant(iris_rand[:120,0:4],dtype=tf.float32)       #转化为float32张量
y_train=tf.constant(iris_rand[:120,4],dtype=tf.int64)           #转化为int32张量
x_test=tf.constant(iris_rand[120:,0:4],dtype=np.float32)
y_test=tf.constant(iris_rand[120:,4],dtype=tf.int64)X_train=x_train-tf.reduce_mean(x_train,axis=0)      #中心化, x_train.dtype=dtype('O'),是object
X_test=x_test-tf.reduce_mean(x_test,axis=0)
Y_train=tf.one_hot(y_train,3)                       #转化为独热编码Y_train.shape=TensorShape([120, 3])
Y_test=tf.one_hot(y_test,3)learn_rate=0.5                                  #超参数——学习率
iter=50                                         #迭代次数
display_step=10                                 #设置每迭代10次输出结果,方便查看
np.random.seed(612)
W=tf.Variable(np.random.randn(4,3),dtype=tf.float32)    #W列向量,4行3列
B=tf.Variable(np.zeros([3]),dtype=tf.float32)           #B列向量,长度为3的一维张量cce_train=[]       #保存交叉熵损失
cce_test=[]
acc_train=[]      #保存准确率
acc_test=[]#训练模型
for i in range(0,iter+1):with tf.GradientTape() as tape:#softmax函数,PRED_train是120*3的张量,每行3个元素表属于某个样品的预测概率PRED_train=tf.nn.softmax(tf.matmul(X_train,W)+B)    #shape=TensorShape([120, 3])Loss_train=tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_train, y_pred=PRED_train))PRED_test=tf.nn.softmax(tf.matmul(X_test,W)+B)Loss_test=tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_test, y_pred=PRED_test))#准确率,求PRED_train的每一行3个元素的max,即属于对应标签的概率最大,再与真实值y_train比较,求得准确率Accuracy_train=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_train,axis=1),y_train),tf.float32))Accuracy_test=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_test,axis=1),y_test),tf.float32))   cce_train.append(Loss_train)cce_test.append(Loss_test)acc_train.append(Accuracy_train)acc_test.append(Accuracy_test)grads=tape.gradient(Loss_train,[W,B])W.assign_sub(learn_rate*grads[0])       #dL_dWB.assign_sub(learn_rate*grads[1])       #dL_dBif i%display_step==0:print("i:%i,\tTrainAcc:%f,TrainLoss:%f\tTestAcc:%f,TestLoss:%f" %(i,Accuracy_train,Loss_train,Accuracy_test,Loss_test))#可视化,图1准确率,图2损失函数
plt.figure(figsize=(10,3))
plt.subplot(121)
plt.plot(cce_train,color="blue",label="train")
plt.plot(cce_test,color="red",label="test")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.subplot(122)
plt.plot(acc_train,color="blue",label="train")
plt.plot(acc_test,color="red",label="test")
plt.xlabel("Iteration")
plt.ylabel("Accuracy")
plt.tight_layout()      #自动调整子图
plt.show()输出:训练集和测试集损失都在下降,可以继续训练
i:0,	TrainAcc:0.291667,TrainLoss:2.102095	TestAcc:0.366667,TestLoss:1.757901
i:10,	TrainAcc:0.891667,TrainLoss:0.338472	TestAcc:0.933333,TestLoss:0.447548
i:20,	TrainAcc:0.933333,TrainLoss:0.271075	TestAcc:0.900000,TestLoss:0.405325
i:30,	TrainAcc:0.958333,TrainLoss:0.234893	TestAcc:0.833333,TestLoss:0.384106
i:40,	TrainAcc:0.958333,TrainLoss:0.210969	TestAcc:0.766667,TestLoss:0.370561
i:50,	TrainAcc:0.966667,TrainLoss:0.193312	TestAcc:0.766667,TestLoss:0.360828

在这里插入图片描述

6、多层神经网络:增加隐含层

在这里插入图片描述

7、实现异或运算(01、10为1,00、11为0)

采用2个感知机:一个感知机相当于一根直线,下图第1个感知机实现与运算(11–>1,其他–>0),第2个感知机实现或非运算(见下图红色横线处)
在这里插入图片描述
再进行叠加(对h1、h2进行或非运算),得到异或运算的模型(每个神经元,即感知机,有3个参数):
在这里插入图片描述
也可以使用以下运算(先进行或运算OR、或非运算NAND,再进行与运算AND):
在这里插入图片描述

8、线性不可分问题

可以转化为多个线性问题,每个线性问题用一个感知机(一个神经元下图第3图的橙色圈)表示一条直线,再用一个神经元将其组合起来(下图第3图绿色圈):
在这里插入图片描述
下图中1个四边形,1个六变形。需要用2个隐含层(下图红色框),用4个神经元(黄色圈)区分4边形,用6个神经元(橙色圈)区分6边形,再将2个图形组合起来(绿色圈)
在这里插入图片描述

9、万能近似定理

在前馈型神经网络中,只要有一个隐含层,并且这个隐含层中有足够多的神经元,就可以逼近任意一个连续的函数或空间分布

  • 多隐含层神经网络:能够表示非连续的函数或空间区域、减少泛化误差、减少每层神经元的数量
    在这里插入图片描述

10、超参数与验证集

例如:有2个超参数a、b,a∈{1,2,3},b∈{4,5,6,7},那么就有3*4种组合。使用同一个训练集训练每一种组合得到各种组合的模型,使用同一个验证集测试其误差(防止模型的过拟合),去除误差较大的模型,确定模型超参数,再在测试集评估模型的泛化能力。

11、误差反向传播算法(Backpropagation, BP)

误差反向传播算法(Backpropagation, BP):利用链式法则,反向传播损失函数的梯度信息,计算出损失函数对网络中所有模型参数的梯度(它计算的只是梯度,其本身不是学习算法,将梯度传递给其他算法,如梯度下降法,来学习更新模型的参数)

举个栗子:下面神经网络,输入值x=1时,真实值y=0.8,4个模型参数wh、bh、w0、b0,重复下面4个步骤:
在这里插入图片描述

step1:设置模型参数初始值:wh=0.2, bh=0.1, w0=0.3, b0=0.2
step2:正向计算预测值(即是计算预测值y0):
y h = 1 1 + e − ( 0.2 ∗ 1 + 0.1 ) = 0.57 y_h=\dfrac{1}{1+e^{-(0.2*1+0.1)}}=0.57 yh=1+e(0.21+0.1)1=0.57
y 0 = 1 1 + e − ( 0.3 ∗ 0.57 + 0.2 ) = 0.59 y_0=\dfrac{1}{1+e^{-(0.3*0.57+0.2)}}=0.59 y0=1+e(0.30.57+0.2)1=0.59
step3:计算误差:Loss=0.5*(y-y0)²=0.02205
step4:误差反向传播:
在这里插入图片描述

  • 可以用TensorFlow自带求导自动求偏导,也可手动求,下面手动对w求偏导数的过程(用求导的链式求导即可):(图中有问题的:dLoss/dw0少了一个负号!!!)
    在这里插入图片描述
    同理,更新参数b0(和上面对w0求偏导比较,只有dz0/db0不同):
    在这里插入图片描述
    同理,更新隐含层模型参数wh、bh:
    在这里插入图片描述
    在这里插入图片描述
    如果隐含层有多个神经元,那么误差反向传播,则按照权值wi按比例反向传播:
    在这里插入图片描述
    如果输出层有多个神经元,和上面同理:
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/68778.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第十二章 I 开头的术语

文章目录 第十二章 I 开头的术语以 I 开头的术语被识别 (identified by)识别关系 (identifying relationship)身份 (identity)idkey隐式全局引用 (implicit global reference)隐含命名空间 (implied namespace)包含文件 (include file)传入锁 (incoming lock) 索引 (index)索引…

CSS 溢出内容处理:从基础到实战

CSS 溢出内容处理:从基础到实战 1. 什么是溢出?示例代码:默认溢出行为 2. 使用 overflow 属性控制溢出2.1 使用 overflow: hidden 裁剪内容示例代码:裁剪溢出内容 2.2 使用 overflow: scroll 显示滚动条示例代码:显示滚…

网工_HDLC协议

2025.01.25:网工老姜学习笔记 第9节 HDLC协议 9.1 HDLC高级数据链路控制9.2 HDLC帧格式(*控制字段)9.2.1 信息帧(承载用户数据,0开头)9.2.2 监督帧(帮助信息可靠传输,10开头&#xf…

快速提升网站收录:如何设置网站标签?

本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/45.html 为了快速提升网站的收录,合理设置网站标签是至关重要的。网站标签主要包括标题标签(TitleTag)、描述标签(DescriptionTag&#xff09…

CSS(快速入门)

欢迎大家来到我的博客~欢迎大家对我的博客提出指导,有错误的地方会改进的哦~点击这里了解更多内容 目录 一、什么是CSS?二、基本语法规范三、CSS选择器3.1 标签选择器3.2 id选择器3.3 class选择器3.4 通配符选择器3.5 复合选择器 四、常用CSS样式4.1 color4.2 font…

3.Spring-事务

一、隔离级别: 脏读: 一个事务访问到另外一个事务未提交的数据。 不可重复读: 事务内多次查询相同条件返回的结果不同。 幻读: 一个事务在前后两次查询同一个范围的时候,后一次查询看到了前一次查询没有看到的行。 二…

C++STL之stack和queue容器(详细+通俗易懂)

前言:老铁们好,笔者好久没更新STL的容器了,今天,笔者接着之前的STL容器的内容继续更新,所以今天给老铁们分享的是STL里面的栈和队列的容器的知识。 1.栈的定义 老规矩,我们先来看看C的官网对stack的介绍文档。 然后…

Kafka 压缩算法详细介绍

文章目录 一 、Kafka 压缩算法概述二、Kafka 压缩的作用2.1 降低网络带宽消耗2.2 提高 Kafka 生产者和消费者吞吐量2.3 减少 Kafka 磁盘存储占用2.4 减少 Kafka Broker 负载2.5 降低跨数据中心同步成本 三、Kafka 压缩的原理3.1 Kafka 压缩的基本原理3.2. Kafka 压缩的工作流程…

C# 语言基础全面解析

.NET学习资料 .NET学习资料 .NET学习资料 一、引言 C# 是一种功能强大、面向对象且类型安全的编程语言,由微软开发,广泛应用于各种类型的软件开发,从桌面应用、Web 应用到游戏开发等领域。本文将全面介绍 C# 语言的基础知识,帮…

实战:利用百度站长平台加速网站收录

本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/33.html 利用百度站长平台加速网站收录是一个实战性很强的过程,以下是一些具体的步骤和策略: 一、了解百度站长平台 百度站长平台是百度为网站管理员提供的一系列工…

DNS缓存详解(DNS Cache Detailed Explanation)

DNS缓存详解 清空DNS缓存可以让网页访问更快捷。本文将从什么是DNS缓存、为什么清空DNS缓存、如何清空DNS缓存、清空DNS缓存存在的问题四个方面详细阐述DNS缓存清空的相关知识。 一、什么是DNS缓存 1、DNS缓存的定义: DNS缓存是域名系统服务在遇到DNS查询时自动…

数组排序算法

数组排序算法 用C语言实现的数组排序算法。 排序算法平均时间复杂度最坏时间复杂度最好时间复杂度空间复杂度是否稳定适用场景QuickO(n log n)O(n)O(n log n)O(log n)不稳定大规模数据,通用排序BubbleO(n)O(n)O(n)O(1)稳定小规模数据,教学用途InsertO(n)…

快速更改WampServer根目录php脚本

快速更改WampServer根目录php脚本 <?php // 配置文件地址 $apacheConfPath C:\Install\CTF\Wampserver\bin\apache\apache2.4.62.1\conf\httpd.conf; $apacheConfPath2 C:\Install\CTF\Wampserver\bin\apache\apache2.4.62.1\conf\extra\httpd-vhosts.conf; // 新根目录…

OFDM系统仿真

1️⃣ OFDM的原理 1.1 介绍 OFDM是一种多载波调制技术&#xff0c;将输入数据分配到多个子载波上&#xff0c;每个子载波上可以独立使用 QAM、PSK 等传统调制技术进行调制。这些子载波之间互相正交&#xff0c;从而可以有效利用频谱并减少干扰。 1.2 OFDM的核心 多载波调制…

第11章:根据 ShuffleNet V2 迁移学习医学图像分类任务:甲状腺结节检测

目录 1. Shufflenet V2 2. 甲状腺结节检测 2.1 数据集 2.2 训练参数 2.3 训练结果 2.4 可视化网页推理 3. 下载 1. Shufflenet V2 shufflenet v2 论文中提出衡量轻量级网络的性能不能仅仅依靠FLOPs计算量&#xff0c;还应该多方面的考虑&#xff0c;例如MAC(memory acc…

.Net WebAPI -[HttpPut(“{fileServiceId:int}“)]

[HttpPut("{fileServiceId:int}")] 这个写法是 ASP.NET Core 中的一个路由特性&#xff0c;用于定义一个 HTTP PUT 请求的路由&#xff0c;并指定路由参数的类型。 解析 HttpPut [HttpPut]&#xff1a; 这是一个 ASP.NET Core 的路由特性&#xff0c;用于标记一个方…

【C语言】内存管理

【C语言】内存管理 文章目录 【C语言】内存管理1.概念2.库函数3.动态分配内存malloccalloc 4.重新调整内存的大小和释放内存reallocfree 1.概念 C 语言为内存的分配和管理提供了几个函数。这些函数可以在 <stdlib.h> 头文件中找到。 在 C 语言中&#xff0c;内存是通过…

网络编程套接字(中)

文章目录 &#x1f34f;简单的TCP网络程序服务端创建套接字服务端绑定服务端监听服务端获取连接服务端处理请求客户端创建套接字客户端连接服务器客户端发起请求服务器测试单执行流服务器的弊端 &#x1f350;多进程版的TCP网络程序捕捉SIGCHLD信号让孙子进程提供服务 &#x1…

happytime

happytime 一、查壳 无壳&#xff0c;64位 二、IDA分析 1.main 2.cry函数 总体&#xff1a;是魔改的XXTEA加密 在main中可以看到被加密且分段的flag在最后的循环中与V6进行比较&#xff0c;刚好和上面v6数组相同。 所以毫无疑问密文是v6. 而与flag一起进入加密函数的v5就…

DIFY源码解析

偶然发现Github上某位大佬开源的DIFY源码注释和解析&#xff0c;目前还处于陆续不断更新地更新过程中&#xff0c;为大佬的专业和开源贡献精神点赞。先收藏链接&#xff0c;后续慢慢学习。 相关链接如下&#xff1a; DIFY源码解析