第11章:根据 ShuffleNet V2 迁移学习医学图像分类任务:甲状腺结节检测

目录

1. Shufflenet V2

2. 甲状腺结节检测

2.1 数据集

2.2 训练参数

2.3 训练结果

2.4 可视化网页推理

3. 下载


1. Shufflenet V2

shufflenet v2 论文中提出衡量轻量级网络的性能不能仅仅依靠FLOPs计算量,还应该多方面的考虑,例如MAC(memory access cost),还应该比较在不同的硬件设备下的性能等等

因此,基于多方面的考虑。shufflenet v2 通过大量的实验和测试总结了轻量化网络的四个准则,然后根据这四条准则搭建了shufflenet v2网络

 

  1.  输入输出通道个数相同的时候,内存访问量MAC最小
  2. 分组卷积的分组数过大会增加MAC
  3. 碎片化操作会并行加速并不友好
  4. element-wise 操作带来的内存和耗时不可以忽略

每条原则的具体解释参考:ShuffleNet V2 迁移学习对花数据集训练_shufflenetv2进行预训练的效果-CSDN博客

2. 甲状腺结节检测

Shufflenet V2 实现的model部分代码如下面所示,这里如果采用官方预训练权重的话,会自动导入官方提供的最新版本的权重

这里提供了4种网络结构,分别对应output channels参数

2.1 数据集

数据集文件如下:

标签如下:

{"0": "0","1": "1"
}

其中,训练集的总数为5103,验证集的总数为2185

2.2 训练参数

训练的参数如下:

    parser.add_argument("--model", default='x0_5', type=str,help='x0_5,x1_0,x1_5,x2_0')parser.add_argument("--pretrained", default=True, type=bool)       # 采用官方权重parser.add_argument("--freeze_layers", default=True, type=bool)    # 冻结权重parser.add_argument("--batch-size", default=8, type=int)parser.add_argument("--epochs", default=10, type=int)parser.add_argument("--optim", default='SGD', type=str,help='SGD,Adam,AdamW')         # 优化器选择parser.add_argument('--lr', default=0.01, type=float)parser.add_argument('--lrf',default=0.001,type=float)                  # 最终学习率 = lr * lrfparser.add_argument('--save_ret', default='runs', type=str)             # 保存结果parser.add_argument('--data_train',default='./data/train',type=str)           # 训练集路径parser.add_argument('--data_val',default='./data/val',type=str)               # 测试集路径

需要注意的是网络分类的个数不需要指定,摆放好数据集后,代码会根据数据集自动生成!

网络模型信息如下:

{"train parameters": {"model": "x0_5","pretrained": true,"freeze_layers": true,"batch_size": 8,"epochs": 10,"optim": "SGD","lr": 0.01,"lrf": 0.001,"save_folder": "runs"},"dataset": {"trainset number": 5103,"valset number": 2185,"number classes": 2},"model": {"total parameters": 343842.0,"train parameters": 2050,"flops": 43550112.0},

2.3 训练结果

所有的结果都保存在 save_ret 目录下,这里是 runs 

weights 下有最好和最后的权重,在训练完成后控制台会打印最好的epoch

这里只展示部分结果:可以看到网络没有完全收敛,增大epoch会得到更好的效果

训练日志:

    "epoch:9": {"train info": {"accuracy": 0.6607877718975881,"0": {"Precision": 0.6989,"Recall": 0.4334,"Specificity": 0.8471,"F1 score": 0.535},"1": {"Precision": 0.646,"Recall": 0.8471,"Specificity": 0.4334,"F1 score": 0.733},"mean precision": 0.67245,"mean recall": 0.64025,"mean specificity": 0.64025,"mean f1 score": 0.634},"valid info": {"accuracy": 0.5711670480523059,"0": {"Precision": 0.5455,"Recall": 0.2866,"Specificity": 0.8043,"F1 score": 0.3758},"1": {"Precision": 0.5791,"Recall": 0.8043,"Specificity": 0.2866,"F1 score": 0.6734},"mean precision": 0.5623,"mean recall": 0.54545,"mean specificity": 0.54545,"mean f1 score": 0.5246}}

 

训练集和测试集的混淆矩阵:

2.4 可视化网页推理

推理是指没有标签,只有图片数据的情况下对数据的预测,这里使用了网页推理

值得注意的是,如果训练了自己的数据集,需要对infer脚本进行更改,如下:

  • 都需要绝对路径,这个是代码自动生成的类别文件,在runs下
  • IMAGE_PATH 是默认展示的demo图片位置

在控制台输入下面命令即可:

streamlit run D:\project\shufflenetV2\infer.py

 

3. 下载

关于本项目代码和数据集、训练结果的下载:

计算机视觉项目:计算机视觉项目:ShufflenetV2模型实现的图像识别项目:甲状腺结节识别资源-CSDN文库

关于Ai 深度学习图像识别、医学图像分割改进系列:AI 改进系列_听风吹等浪起的博客-CSDN博客

神经网络改进完整实战项目:改进系列_听风吹等浪起的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/68763.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.Net WebAPI -[HttpPut(“{fileServiceId:int}“)]

[HttpPut("{fileServiceId:int}")] 这个写法是 ASP.NET Core 中的一个路由特性,用于定义一个 HTTP PUT 请求的路由,并指定路由参数的类型。 解析 HttpPut [HttpPut]: 这是一个 ASP.NET Core 的路由特性,用于标记一个方…

【C语言】内存管理

【C语言】内存管理 文章目录 【C语言】内存管理1.概念2.库函数3.动态分配内存malloccalloc 4.重新调整内存的大小和释放内存reallocfree 1.概念 C 语言为内存的分配和管理提供了几个函数。这些函数可以在 <stdlib.h> 头文件中找到。 在 C 语言中&#xff0c;内存是通过…

网络编程套接字(中)

文章目录 &#x1f34f;简单的TCP网络程序服务端创建套接字服务端绑定服务端监听服务端获取连接服务端处理请求客户端创建套接字客户端连接服务器客户端发起请求服务器测试单执行流服务器的弊端 &#x1f350;多进程版的TCP网络程序捕捉SIGCHLD信号让孙子进程提供服务 &#x1…

happytime

happytime 一、查壳 无壳&#xff0c;64位 二、IDA分析 1.main 2.cry函数 总体&#xff1a;是魔改的XXTEA加密 在main中可以看到被加密且分段的flag在最后的循环中与V6进行比较&#xff0c;刚好和上面v6数组相同。 所以毫无疑问密文是v6. 而与flag一起进入加密函数的v5就…

DIFY源码解析

偶然发现Github上某位大佬开源的DIFY源码注释和解析&#xff0c;目前还处于陆续不断更新地更新过程中&#xff0c;为大佬的专业和开源贡献精神点赞。先收藏链接&#xff0c;后续慢慢学习。 相关链接如下&#xff1a; DIFY源码解析

Electricity Market Optimization 探索系列(一)

​ 本文参考链接&#xff1a;Linear Programming Mini Example 先从一个线性规划的例子说起&#xff1a; 问题背景&#xff1a; 现在需要使用两台发电机满足用户的用电需求&#xff0c;发电机一的发电功率上限是 6MW&#xff0c;发电机二的发电功率上限是 4MW&#xff0c;发电…

Spring的AOP思想中事物管理注意点

我们以事务管理实现AOP思想 通过在Service层加入事务管理,因为Service层可能使用多个DAO(多条SQL语句) 要保证这些SQL要么同时成功,要么同时失败,例如:学生Serivce:删除学生的时候,还需要删除学生关联信息(选课信息) 只有都删除成功才提交,如果有一条执行失败…

Hot100之子串

560和为K的子数组 题目 给你一个整数数组 nums 和一个整数 k &#xff0c;请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列 思路解析 ps&#xff1a;我们的presum【0】就是0&#xff0c;如果没有这个0的话我们的第一个元素就无法减去上…

网络工程师 (11)软件生命周期与开发模型

一、软件生命周期 前言 软件生命周期&#xff0c;也称为软件开发周期或软件开发生命周期&#xff0c;是指从软件项目的启动到软件不再被使用为止的整个期间。这个过程可以细分为多个阶段&#xff0c;每个阶段都有其特定的目标、任务和产出物。 1. 问题定义与需求分析 问题定义…

谈谈你所了解的AR技术吧!

深入探讨 AR 技术的原理与应用 在科技飞速发展的今天&#xff0c;AR&#xff08;增强现实&#xff09;技术已经悄然改变了我们与周围世界互动的方式。你是否曾想象过如何能够通过手机屏幕与虚拟物体进行实时互动&#xff1f;在这篇文章中&#xff0c;我们将深入探讨AR技术的原…

【Linux】使用管道实现一个简易版本的进程池

文章目录 使用管道实现一个简易版本的进程池流程图代码makefileTask.hppProcessPool.cc 程序流程&#xff1a; 使用管道实现一个简易版本的进程池 流程图 代码 makefile ProcessPool:ProcessPool.ccg -o $ $^ -g -stdc11 .PHONY:clean clean:rm -f ProcessPoolTask.hpp #pr…

MYSQL--一条SQL执行的流程,分析MYSQL的架构

文章目录 第一步建立连接第二部解析 SQL第三步执行 sql预处理优化阶段执行阶段索引下推 执行一条select 语句中间会发生什么&#xff1f; 这个是对 mysql 架构的深入理解。 select * from product where id 1;对于mysql的架构分层: mysql 架构分成了 Server 层和存储引擎层&a…

使用Ollama 在Ubuntu运行deepseek大模型:以DeepSeek-coder为例

DeepSeek大模型这几天冲上热搜啦&#xff01; 咱们来亲身感受下DeepSeek模型的魅力吧&#xff01; 整个操作流程非常简单方便&#xff0c;只需要2步&#xff0c;先安装Ollama&#xff0c;然后执行大模型即可。 安装Ollama 在Ubuntu下安装Ollama非常简单&#xff0c;直接sna…

基于Spring Security 6的OAuth2 系列之七 - 授权服务器--自定义数据库客户端信息

之所以想写这一系列&#xff0c;是因为之前工作过程中使用Spring Security OAuth2搭建了网关和授权服务器&#xff0c;但当时基于spring-boot 2.3.x&#xff0c;其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0&#xff0c;结果一看Spring Security也升级…

深入剖析C语言字符串操作函数:my_strlen与my_strcpy

在C语言的编程世界里&#xff0c;字符串操作是日常开发中极为常见的任务。熟练掌握字符串操作函数&#xff0c;不仅能够提高代码的效率和可读性&#xff0c;还能为解决各种实际问题提供有力的支持。本文将深入剖析两个自定义的字符串操作函数&#xff1a; my_strlen 和 my_strc…

《苍穹外卖》项目学习记录-Day10来单提醒

type&#xff1a;用来标识消息的类型&#xff0c;比如说type1表示来单提醒&#xff0c;type2表示客户催单。 orderId&#xff1a;表示订单id&#xff0c;因为不管是来单提醒还是客户催单&#xff0c;这一次提醒都对应一个订单。是用户下了某个单或者催促某个订单&#xff0c;这…

NVIDIA (英伟达)的 GPU 产品应用领域

游戏娱乐领域 PC 游戏&#xff1a;NVIDIA 的 GeForce 系列 GPU 是 PC 游戏玩家的首选之一。能实现实时光线追踪、高分辨率渲染等&#xff0c;使游戏画面更加逼真&#xff0c;如《赛博朋克 2077》等支持光线追踪的游戏&#xff0c;在 NVIDIA GPU 的加持下&#xff0c;可呈现出真…

数据结构与算法之栈: LeetCode 2042. 检查句子中的数字是否递增 (Ts版)

检查句子中的数字是否递增 https://leetcode.cn/problems/check-if-numbers-are-ascending-in-a-sentence/description/ 描述 句子是由若干 token 组成的一个列表&#xff0c;token 间用 单个 空格分隔&#xff0c;句子没有前导或尾随空格。每个 token 要么是一个由数字 0-9 …

fpga系列 HDL:XILINX Vivado Vitis 高层次综合(HLS) 实现 EBAZ板LED控制(上)

目录 创建工程创建源文件并编写C代码C仿真综合仿真导出RTL CG导出RTL错误处理&#xff1a; 创建工程 创建源文件并编写C代码 创建源文件(Souces下的hlsv.h和hlsv.cpp&#xff0c;Test Bench下的test_hlsv1.cpp)&#xff1a; hlsv1.h #ifndef HLSV1 #define HLSV1 #include &l…

JVM栈溢出线上环境排查

#查看当前Linux系统进程ID、线程ID、CPU占用率&#xff08;-eo后面跟想要展示的列&#xff09; ps H -eo pid,tid,%cpups H -eo pid,tid,%cpu |grep tid #使用java jstack 查看进程id下所有线程id的情况 jstack pid 案例2 通过jstack 排查死锁问题 #启动java代码 jstack 进…