【统计的思想】假设检验(二)

假设检验是根据人为设定的显著水平,对被测对象的总体质量特性进行统计推断的方法。

如果我们通过假设检验否定了零假设,只是说明在设定的显著水平下,零假设成立的概率比较小,并不是说零假设就肯定不成立。如果零假设事实上是成立的,我们就犯了弃真错误,也就是第一类错误。这种错误出现的可能性,叫做弃真概率。

如果我们通过假设检验接受了零假设,也只是因为测试结果和期望的差异并不显著,并不足以推翻零假设,并不是说零假设就肯定成立。如果零假设事实上并不成立,我们就犯了取伪错误,也就是第二类错误。这种错误出现的可能性,叫做取伪概率。

显然,如果减小显著水平,就更不容易推翻零假设,所以弃真概率会变小,但相应的取伪概率就会变大;而增大显著水平的话,就更容易推翻零假设,取伪概率会变小,但弃真概率就会变大。

那怎么才能同时减小弃真概率和取伪概率呢?一般要在减小显著水平的同时,增加样本量。来看一个例子。

很多人以为结核病已经绝迹了,实际上并不是。2023年世卫组织发布的报告说,结核病发病率高达万分之5.2,仍然是世界上最常见的传染病之一。结核病的传统药物治愈率是60%。最近有一家药厂研制了一种新药,随机找了50名患者做临床试验,治愈率达到了70%。那么,我们能不能下结论说,这种新药的药效比传统药物更好呢?

我们来做假设检验:

  1. 建立零假设。假设新药的药效跟传统药没有差别,治愈率还是60%;

  2. 设定显著水平。取α=0.01;

  3. 计算测试结果的发生概率。如果新药的治愈率是60%,就是说每个人被治愈的可能性都是60%,那么50人里有70%的人、也就是35人被治愈的概率是多少呢?可以用二项分布来计算,算出来的概率是0.04;

  4. 统计推断。由于测试结果的发生概率比显著水平0.01要大,所以我们会接受零假设,结论是新药跟传统药没有显著差别。

但是如果我们扩大临床试验的规模,把人数增加到120人,样本治愈率还是70%,用同样的方法算下来,概率是0.006,就比显著水平0.01要小了,于是零假设就被推翻了,结论就会变成“新药的药效要明显好于传统药物”。

这两个结论,哪一个更靠谱呢?很明显是后者。因为样本量越大, 样本就越能代表总体,抽样误差就越小。把样本量增大到120之后,发现假设检验的结论变了,说明之前样本量是50的时候,我们犯了取伪错误。

所以我们说,要想同时减小弃真概率和取伪概率,一般就需要增加样本量。这跟统计抽样测试里的结论是类似的。当然样本量越大,测试成本也越高。

在统计抽样测试中,我们可以借助操作特性曲线,来描述测试设计方案背后的生产方风险和使用方风险,给测试结论做一个必要的补充。这是统计抽样测试缓解测试可信性问题的常规思路。

操作特性曲线

海旭老师,公众号:重新认识测试设计【统计的思想】统计抽样测试(二)

其实还有一个办法,可以达到类似的效果,就是用假设检验。

还是来看例子:假设待测批的批量是5000,要求不合格率不超过25%,抽取了305件样品做检验,有92件不合格,样本的不合格率是30.2%。那么,待测批是不是一个合格批呢?按统计抽样测试的判断,结论应该是不合格,但这个结论不一定靠谱,有可能犯弃真错误,所以需要用操作特性曲线来补充说明。

如果用假设检验,应该怎么做呢?在前面的文章中,我们已经介绍过抽样分布的一组基本规律:

① 样本量越大,样本均值越趋近于服从正态分布;

② 样本均值的数学期望与总体的数学期望相同;

③ 样本均值的方差等于总体方差除以样本量。

抽样分布的基本规律

海旭老师,公众号:重新认识测试设计【统计的思想】假设检验(一)

如果我们把不合格的样本记作1,合格的样本记作0,那样本均值就等同于样本不合格率。这样,上述基本规律就能应用于统计抽样测试了,即:

① 当样本量n很大的时候,样本不合格率近似服从正态分布;

② 样本不合格率的数学期望,等于整批的不合格率p;

③ 样本不合格率的方差,等于p(1-p)/n。因为整批服从伯努利分布,方差是p(1-p)。

基于此,我们就可以做假设检验了:

  1. 建立零假设。假设整批的不合格率是25%,是一个合格批;

  2. 设定显著水平。这里取α=0.05;

  3. 计算测试结果发生的概率。既然样本不合格率服从正态分布,均值是25%,方差是:\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}=0.0248

    那么样本不合格率达到30.2%以上的概率,就是:P(T)=1-\Phi\left( \frac{0.302-0.25}{0.0248} \right)=0.0179

  4. 统计推断。测试结果发生的概率比显著水平小,所以否定零假设。

最终的测试结论是,在显著水平0.05的概率意义下,待测批不合格。可以看到,假设检验是从显著水平的角度来补充测试结论的,同样能缓解测试可信性问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/68351.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2025多目标优化创新路径汇总

多目标优化是当下非常热门且有前景的方向!作为AI领域的核心技术之一,其专注于解决多个相互冲突的目标的协同优化问题,核心理念是寻找一组“不完美但均衡”的“帕累托最优解”。在实际中,几乎处处都有它的身影。 但随着需求场景的…

DeepSeek-R1试用

最近DeepSeek太火了,对配置要求不高。刚好放假,下载试试。发现开源大模型的生态做的挺好的,几分钟就能在本地部署一个大模型。 配置 NVIDIA RTX 2060 6GB(最低要求 NVIDIA GTX 1060 6GB ) 下载Ollama Ollama是一个…

Android中Service在新进程中的启动流程2

目录 1、Service在客户端的启动入口 2、Service启动在AMS的处理 3、Service在新进程中的启动 4、Service与AMS的关系再续 上一篇文章中我们了解了Service在新进程中启动的大致流程,同时认识了与客户端进程交互的接口IApplicationThread以及与AMS交互的接口IActi…

C语言--数据在内存中的存储

在C语言中,数据在内存中的存储方式主要取决于数据的类型和存储位置。以下是C语言中数据在内存中的存储方式的详细说明: 1. 数据类型与存储方式 基本数据类型 • 整数类型(如int、short、long等): • 存储方式&#x…

【PySide6快速入门】QDialog对话框的使用

文章目录 PySide6快速入门:QDialog对话框的使用前言QDialog的基本用法创建和显示对话框 QDialog的常用函数1. exec()2. accept()3. reject()4. setWindowTitle()5. setModal()6. setFixedSize()7. resize()8. reject()9. setLayout()10. open() 总结 PySide6快速入门…

2748. 美丽下标对的数目(Beautiful Pairs)

2748. 美丽下标对的数目&#xff08;Beautiful Pairs&#xff09; 题目分析 给定一个整数数组 nums&#xff0c;我们需要找出其中符合条件的“美丽下标对”。美丽下标对是指&#xff0c;数组中的某一对数字 nums[i] 和 nums[j]&#xff08;其中 0 ≤ i < j < nums.leng…

计网week1+2

计网 一.概念 1.什么是Internet 节点&#xff1a;主机及其运行的应用程序、路由器、交换机 边&#xff1a;通信链路&#xff0c;接入网链路主机连接到互联网的链路&#xff0c;光纤、网输电缆 协议&#xff1a;对等层的实体之间通信要遵守的标准&#xff0c;规定了语法、语义…

在 Vue 3 中,怎么管理环境变量

在 Vue 3 中&#xff0c;环境变量管理是通过 .env 文件来进行的&#xff0c;利用这些文件可以让开发者根据不同的环境&#xff08;开发、生产、测试等&#xff09;配置不同的变量。这一机制由 Vite 构建工具支持&#xff0c;它帮助开发者根据不同的环境需求做出相应配置。 1. …

Python的那些事第三篇:Python编程的“调味料”与“交流术”运算符与输入输出

运算符与输入输出&#xff1a;Python编程的“调味料”与“交流术” 在编程的世界里&#xff0c;Python不仅仅是一门语言&#xff0c;它更像是一位充满智慧的厨师&#xff0c;而运算符和输入输出则是它手中的“调味料”和“交流术”。没有这些工具&#xff0c;代码就会像没有加…

windows下部署安装 ELK,nginx,tomcat日志分析

1.安装包 如上就是elk- windows下部署需要用到的安装包 &#xff08;ps:注意版本需要对应&#xff0c;另外es7版本对应是 jdk8&#xff0c;若更高版本 请自行查询版本对应号&#xff09;。 下载地址&#xff1a; Past Releases of Elastic Stack Software | Elastic 此地址可…

内联函数——减少函数调用开销的高效利器

在C中&#xff0c;内联函数&#xff08;Inline Function&#xff09;是一种优化手段&#xff0c;它通过将函数的代码插入到每个调用点来避免函数调用的开销。本文将详细介绍内联函数的工作原理、应用场景以及注意事项。 1. 什么是内联函数&#xff1f; 内联函数是一种特殊的函…

docker安装MySQL8:docker离线安装MySQL、docker在线安装MySQL、MySQL镜像下载、MySQL配置、MySQL命令

一、镜像下载 1、在线下载 在一台能连外网的linux上执行docker镜像拉取命令 docker pull mysql:8.0.41 2、离线包下载 两种方式&#xff1a; 方式一&#xff1a; -&#xff09;在一台能连外网的linux上安装docker执行第一步的命令下载镜像 -&#xff09;导出 # 导出镜…

【AI论文】魔鬼在细节:关于在训练专用混合专家模型时实现负载均衡损失

摘要&#xff1a;本文重新审视了在训练混合专家&#xff08;Mixture-of-Experts, MoEs&#xff09;模型时负载均衡损失&#xff08;Load-Balancing Loss, LBL&#xff09;的实现。具体来说&#xff0c;MoEs的LBL定义为N_E乘以从1到N_E的所有专家i的频率f_i与门控得分平均值p_i的…

游戏策划的分类

P3游戏策划分类 1.程序2.美术3.策划 程序&#xff1a;一般分为客户端程序和服务器程序 客户端程序一般负责游戏的前端画面表现 服务器程序负责游戏的后端运算 美术&#xff1a;角色原画&#xff0c;角色模型动作&#xff0c;场景原画&#xff0c;场景模型&#xff0c;UI设计&a…

C语言编程笔记:文件处理的艺术

大家好&#xff0c;这里是小编的博客频道 小编的博客&#xff1a;就爱学编程 很高兴在CSDN这个大家庭与大家相识&#xff0c;希望能在这里与大家共同进步&#xff0c;共同收获更好的自己&#xff01;&#xff01;&#xff01; 本文目录 引言正文一、为什么要用文件二、文件的分…

sqlzoo答案4:SELECT within SELECT Tutorial

sql练习&#xff1a;SELECT within SELECT Tutorial - SQLZoo world表&#xff1a; namecontinentareapopulationgdpAfghanistanAsia6522302550010020343000000AlbaniaEurope28748283174112960000000AlgeriaAfrica238174137100000188681000000AndorraEurope46878115371200000…

OpenAI的真正对手?DeepSeek-R1如何用强化学习重构LLM能力边界——DeepSeek-R1论文精读

2025年1月20日&#xff0c;DeepSeek-R1 发布&#xff0c;并同步开源模型权重。截至目前&#xff0c;DeepSeek 发布的 iOS 应用甚至超越了 ChatGPT 的官方应用&#xff0c;直接登顶 AppStore。 DeepSeek-R1 一经发布&#xff0c;各种资讯已经铺天盖地&#xff0c;那就让我们一起…

Baklib如何重塑内容中台的智能化推荐系统实现个性化服务

内容概要 在数字内容日益丰富的今天&#xff0c;内容中台的智能化推荐系统显得尤为重要。它通过分析和处理海量的数据&#xff0c;为用户提供个性化的内容推荐&#xff0c;从而提升用户体验。在智能化推荐系统中&#xff0c;主要由以下几个部分构成&#xff1a; 部分主要功能…

从零推导线性回归:最小二乘法与梯度下降的数学原理

​ 欢迎来到我的主页&#xff1a;【Echo-Nie】 本篇文章收录于专栏【机器学习】 本文所有内容相关代码都可在以下仓库中找到&#xff1a; Github-MachineLearning 1 线性回归 1.1 什么是线性回归 线性回归是一种用来预测和分析数据之间关系的工具。它的核心思想是找到一条直…

【MySQL】 数据类型

欢迎拜访&#xff1a;雾里看山-CSDN博客 本篇主题&#xff1a;【MySQL】 数据类型 发布时间&#xff1a;2025.1.27 隶属专栏&#xff1a;MySQL 目录 数据类型分类数值类型tinyint类型数值越界测试结果说明 bit类型基本语法使用注意事项 小数类型float语法使用注意事项 decimal语…