大模型微调终极方案:LoRA、QLoRA原理详解与LLaMA-Factory、Xtuner实战对比

文章目录

    • 一、微调概述
      • 1.1 微调步骤
      • 1.2 微调场景
    • 二、微调方法
      • 2.1 三种方法
      • 2.2 方法对比
      • 2.3 关键结论
    • 三、微调技术
      • 3.1 微调依据
      • 3.2 LoRA
        • 3.2.1 原理
        • 3.2.2 示例
      • 3.3 QLoRA
      • 3.4 适用场景
    • 四、微调框架
      • 4.1 LLaMA-Factory
      • 4.2 Xtuner
      • 4.3 对比

一、微调概述

微调(Fine-tuning)是深度学习中的一种常见方法,它通常用于在预训练模型的基础上进行进一步的训练,以适应特定的任务。微调的主要目的是利用预训练模型已经学习到的通用知识,从而提高模型在特定任务上的性能。常见的微调框架有 LLaMA-Factory 和 XTuner 等。

1.1 微调步骤

以微调 Bert 为例,微调通常包括以下几个步骤:

  1. 加载预训练的BERT模型。
  2. 修改模型结构,将最后一层全连接层的参数进行修改,以适应文本分类任务。
  3. 设置优化器和损失函数,例如Adam优化器和交叉熵损失函数。
  4. 训练模型,使用微调技巧,如学习率调整、权重衰减、数据增强和早停。
  5. 评估模型性能,使用测试集进行评估,计算准确率、召回率等指标。

1.2 微调场景

微调通常用于以下场景:

  • 修改模型的输出层
  • 修改模型的自我认知
  • 改变模型的对话风格

二、微调方法

2.1 三种方法

微调模式主要分为三种:

  1. 增量微调:在预训练模型的基础上,仅对新增的附加参数(如Adapter层)进行训练。这种方法可以显著降低显存和算力需求,适用于资源受限的环境。
  2. 局部微调:在预训练模型的基础上,对模型的局部层(如输出层、注意力头)进行训练。这种方法可以在保证效果的同时,降低显存和算力需求。
  3. 全量微调:在预训练模型的基础上,对模型的所有参数进行训练。这种方法可以完全适配新数据,但需要较高的显存和算力需求。

2.2 方法对比

对比维度增量微调局部微调全量微调
参数调整范围仅新增的附加参数(如Adapter层)模型的部分层(如输出层、注意力头)模型全部参数
显存/算力需求极低(仅需训练少量参数)中等(需训练部分层梯度)极高(需更新所有参数)
训练速度最快(参数少,反向传播计算量小)较快(部分层参与更新)最慢(需全局梯度计算)
效果较弱(依赖新增参数的能力)稳定(平衡性能与资源)最佳(完全适配新数据)
过拟合风险低(原始参数固定)中(部分参数可能过拟合)高(所有参数可能过拟合)
适用场景- 资源受限(如移动端)
- 快速适配小样本
- 中等算力环境
- 任务特定层优化
- 算力充足
- 数据分布与预训练差异大
典型技术LoRA、Adapter、Prefix-Tuning冻结部分层(如BERT的前N层)标准反向传播(全部参数更新)
是否修改原模型否(新增独立参数)是(修改部分原参数)是(修改全部参数)
部署复杂度低(仅需加载附加模块)中(需兼容部分修改层)高(需替换整个模型)

2.3 关键结论

  1. 资源优先级
    • 算力有限 → 增量微调(如QLoRA)。
    • 效果优先 → 全量微调(需4090级GPU)。
  2. 任务适配性
    • 小样本/领域适配 → 局部微调(如仅调整分类头)。
    • 数据分布巨变 → 全量微调(如医疗文本→法律文本)。
  3. 技术趋势
    • 增量微调(如LoRA)因高效性成为主流,尤其适合大模型轻量化部署。

三、微调技术

3.1 微调依据

研究发现,大模型在微调时的权重变化往往集中在一个 低秩子空间 中。也就是说,虽然模型有上亿参数,但实际需要调整的参数是少量的。

3.2 LoRA

LoRA(Low-Rank Adaptation)是一种用于微调大型预训练语言模型的轻量级方法。通过引入低秩矩阵来更新预训练模型的权重,将权重更新矩阵 ΔW 表示为两个较小矩阵 AB 的乘积,只训练这些低秩矩阵,减少需要调整的参数数量,降低计算成本和防止过拟合。

W = W_0 + \Delta W = W_0 + B \cdot A

其中:

  • W₀ 是预训练模型的原始权重(冻结,不更新)。
  • ΔW 是微调过程中需要更新的权重
  • BA 是低秩矩阵,它们的秩远小于原始矩阵的秩
3.2.1 原理
  • 训练时,输入分别与原始权重和两个低秩矩阵进行计算,得到最终结果,优化则仅优化 AB
  • 训练完成后,将两个低秩矩阵与原始模型中的权重进行合并, 合并后的模型与原始模型无异。
    lora
3.2.2 示例

假设原始权重 W₀ 是 1024×1024 矩阵(约100万参数)

  • 全量微调:需更新100万参数。
  • LoRA微调:如果 秩(r)=8,则仅更新 B(1024×8) + A(8×1024) = 16,384参数(近似减少98%)。

3.3 QLoRA

QLoRA(Quantized LoRA)在 LoRA 基础上引入量化技术,不仅对模型引入低秩矩阵,还将低秩矩阵进行 量化,例如使用 4-bit NormalFloat(NF4) 数据类型,进一步减少内存占用和存储需求。同时,采用 Double Quantization 对量化常数进行量化,节省更多内存。

3.4 适用场景

  • LoRA:适用于资源有限但对模型精度要求较高,且希望微调速度相对较快的场景,在大规模预训练模型的微调中能有效减少计算和存储开销。
  • QLoRA:更适合对内存要求极为苛刻的场景,如在边缘设备、移动设备或显存较小的 GPU上运行大型预训练模型,以及需要处理大规模数据但内存资源紧张的情况。

四、微调框架

4.1 LLaMA-Factory

  1. 核心特点:
    • 定位:专注于LLaMA系列模型(如LLaMA-2、Chinese-LLaMA)的高效微调。
    • 关键技术:
      • 支持 LoRA/QLoRA 低秩微调,显存占用降低50%+。
      • 集成 Gradient Checkpointing(梯度检查点),支持大批次训练。
      • 提供 对话模板对齐 工具,解决微调后输出格式混乱问题。
  2. 优势:
    • 界面友好,支持一键启动微调任务。
    • 针对中文优化,内置中文词表扩展和指令数据集(如Alpaca-CN)。
    • 支持快速部署到消费级GPU(如RTX 3090 24GB微调7B模型)。
  3. 适用场景:
    • 轻量化微调中文LLaMA模型。
    • 小样本场景下的领域适配(如医疗、法律)。

详情可查看 大模型微调指南之 LLaMA-Factory 篇:一键启动LLaMA系列模型高效微调

4.2 Xtuner

  1. 核心特点:
    • 定位:通用大模型微调框架,支持多种架构(LLaMA、ChatGLM、InternLM等)。
    • 关键技术:
      • 全参数/增量微调 灵活切换,支持 PyTorch FSDP(多卡分布式训练)。
      • 内置 数据预处理流水线(自动处理文本/多模态数据)。
      • 提供 量化训练(GPTQ/AWQ)和 模型压缩 工具链。
  2. 优势:
    • 模块化设计,轻松适配新模型架构。
    • 与OpenMMLab生态集成(如MMDeploy一键模型导出)。
  3. 适用场景:
    • 全参数微调大规模模型(需A100/H100集群)。
    • 工业级部署需求(如API服务、端侧推理)。

详情请查看 大模型微调指南之 Xtuner 篇:3步实现Qwen1.5中文对话模型优化

4.3 对比

维度LlaMA-FactoryXtuner
核心优势轻量化中文微调,低资源需求多架构支持,工业级部署
微调方式主打LoRA/QLoRA全参数/增量/量化训练全覆盖
硬件要求消费级GPU(如RTX 3090)需高性能GPU(如A100)
典型用户研究者/中小团队企业级开发/云服务商
生态整合中文社区活跃与OpenMMLab工具链深度集成

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/80554.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

单片机-STM32部分:10-2、逻辑分析仪

飞书文档https://x509p6c8to.feishu.cn/wiki/VrdkwVzOnifH8xktu3Bcuc4Enie 安装包如下:根据自己的系统选择,目前这个工具只有window版本哦 安装方法比较简单,都按默认下一步即可,注意不要安装到中文路径哦。 其余部分参考飞书文档…

uniapp-商城-48-后台 分类数据添加修改弹窗bug

在第47章的操作中,涉及到分类的添加、删除和更新功能,但发现uni-popup组件存在bug。该组件的函数接口错误导致在小程序中出现以下问题:1. 点击修改肉类名称时,回调显示为空,并报错“setVal is not defined”&#xff0…

STM32-ADC模数转换器(7)

目录 一、ADC简介 二、逐次逼近型ADC 三、ADC基本结构图 四、规则组的四种转换模式 五、转换时间 对GPIO来说,它只能读取引脚的高低电平,使用了ADC模数转化器之后,就可以对高电平和低电平之间的任意电压进行量化,最终用一个变…

智能商品推荐系统技术路线图

智能商品推荐系统技术路线图 系统架构图 --------------------------------------------------------------------------------------------------------------- | 用户交互层 (Presentation Layer) …

【Docker系列】docker inspect查看容器部署位置

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

标量/向量/矩阵/张量/范数详解及其在机器学习中的应用

标量(Scalar)、向量(Vector)、矩阵(Matrix)、张量(Tensor)与范数(Norm)详解及其在机器学习中的应用 1. 标量(Scalar) 定义&#xff1…

【2025年】基于电脑的jdk1.8通过idea创建springboot2.x版本(非常简洁快速)

【2025年】基于电脑的jdk1.8通过idea创建springboot2.x版本 提示:帮帮志会陆续更新非常多的IT技术知识,希望分享的内容对您有用。本章分享的是springboot的使用。前后每一小节的内容是存在的有:学习and理解的关联性。【帮帮志系列文章】&…

SierraNet协议分析使用指导[RDMA]| 如何设置 NVMe QP 端口以进行正确解码

在解码RoCEv2数据包(包括TCP RDMA和RoCE RDMA)时,若捕获的跟踪数据无法正确解码,通常需要执行特定的解码步骤。对于RoCE RDMA跟踪数据的处理,分析器主要采用两种方式获取必要信息以实现数据包解码: 首先&am…

JavaScript基础-局部作用域

在JavaScript中,理解不同种类的作用域是掌握这门语言的关键之一。作用域决定了变量和函数的可访问性(即可见性和生命周期)。与全局作用域相对应的是局部作用域,它限制了变量和函数只能在其定义的特定范围内被访问。本文将深入探讨…

李沐动手深度学习(pycharm中运行笔记)——09.softmax回归+图像分类数据集+从零实现+简洁实现

09.softmax回归图像分类数据集从零实现简洁实现(与课程对应) 目录 一、softmax回归 1、回归 vs 分类 2、经典分类数据集: 3、从回归到分类——均方损失 4、从回归到多类分类——无校验比例 5、从回归到多类分类——校验比例 6、softmax和…

C++八股——内存分配

文章目录 1. 虚拟内存空间2. malloc和free3. new和delete4. 内存池 1. 虚拟内存空间 程序进程的虚拟内存空间是操作系统为每个进程提供的独立、连续的逻辑地址空间,与物理内存解耦。其核心目的是隔离进程、简化内存管理,并提供灵活的内存访问控制。 &am…

【Linux基础】网络相关命令

目录 netstat命令 1.1 命令介绍 1.2 命令格式 1.3 常用选项 1.4 常用命令实例 1.4.1 显示所有TCP连接 1.4.2 查看路由表 1.4.3 实时监控网络接口流量 1.4.4 查看监听中的端口以及关联进程 ping命令 2.1 命令介绍 2.2 命令格式 2.3 常用选项 2.4 常用示例 ifconfi…

adb 实用命令汇总

版权归作者所有&#xff0c;如有转发&#xff0c;请注明文章出处&#xff1a;https://cyrus-studio.github.io/blog/ 基础adb命令 # 重启adb adb kill-server# 查看已连接的设备 adb devices# 进入命令行 adb shell# 使用 -s 参数来指定设备 adb -s <设备序列号> shell…

C#管道通讯及传输信息丢失的原因

以下是C#管道通讯客户端/服务端共用类 namespace PipeCommunication { /// <summary> /// 管道信息回调通知 /// </summary> /// <param name"msg"></param> public delegate void PipeMessageEventHandler(string msg…

MixTeX - 支持CPU推理的多模态LaTeX OCR

文章目录 一、项目概览相关资源核心特性技术特点 二、安装三、使用说明环境要求 四、版本更新五、当前限制 一、项目概览 MixTeX是一款创新的多模态LaTeX识别小程序&#xff0c;支持本地离线环境下的高效CPU推理。 无论是LaTeX公式、表格还是混合文本&#xff0c;MixTeX都能轻…

简单 Linux 字符设备驱动程序

注&#xff1a;本文为 “Linux 字符设备驱动” 相关文章合辑。 英文引文&#xff0c;机翻未校。 中文引文&#xff0c;略作重排。 未整理去重&#xff0c;如有内容异常&#xff0c;请看原文。 Simple Linux character device driver 简单 Linux 字符设备驱动程序 Oleg Kutko…

NX949NX952美光科技闪存NX961NX964

NX949NX952美光科技闪存NX961NX964 在半导体存储领域&#xff0c;美光科技始终扮演着技术引领者的角色。其NX系列闪存产品线凭借卓越的性能与创新设计&#xff0c;成为数据中心、人工智能、高端消费电子等场景的核心组件。本文将围绕NX949、NX952、NX961及NX964四款代表性产品…

协议路由与路由协议

协议路由”和“路由协议”听起来相似&#xff0c;但其实是两个完全不同的网络概念。下面我来分别解释&#xff1a; 一、协议路由&#xff08;Policy-Based Routing&#xff0c;PBR&#xff09; ✅ 定义&#xff1a; 协议路由是指 根据预设策略&#xff08;策略路由&#xff0…

Linux510 ssh服务 ssh连接

arning: Permanently added ‘11.1.1.100’ (ECDSA) to the list of known hosts. rooot11.1.1.100’s password: Permission denied, please try again. rooot11.1.1.100’s password: Permission denied, please try again 还没生效 登不上了 失效了 sshcaozx26成功登录 …

金融学知识笔记

金融学知识笔记 一、引言 金融学它结合了数学、概率论、统计学、经济学和计算机科学等多学科的知识&#xff0c;用于解决金融领域中的各种问题&#xff0c;如金融衍生品定价、投资组合优化、风险管理和固定收益证券分析等。通过对金融学的学习&#xff0c;我们可以更好地理解…