最新DeepSeek-Prover-V2-671B模型 简介、下载、体验、微调、数据集:专为数学定理自动证明设计的超大垂直领域语言模型(在线体验地址)

DeepSeek-Prover-V2-671B模型 简介、下载、体验、微调、数据集:专为数学定理自动证明设计的超大垂直领域语言模型(在线体验地址)

体验地址:[Hugging Face 在线体验]https://huggingface.co/playground?modelId=deepseek-ai/DeepSeek-Prover-V2-671B&provider=novita
推荐入口:[Novita 平台直达链接(含邀请码)]https://novita.ai/referral?invited_code=A43LMN


一、模型简介

DeepSeek-Prover-V2-671B 是 DeepSeek 团队于 2025 年发布的超大规模开源语言模型,专为 Lean 4 环境下的数学定理自动证明任务设计。该模型采用深度链式思维(Chain-of-Thought)结合形式化推理训练,成功将“人类直觉式证明”与“严谨符号逻辑”结合,开启了 AI 数学证明的新阶段。
在这里插入图片描述

本模型构建在 DeepSeek-V3 架构基础之上,支持超长上下文输入,并在多个数学证明权威基准测试中创下 SOTA 表现。


二、模型亮点与技术创新

1. 冷启动数据构建:递归证明生成流程

  • 利用 DeepSeek-V3 将复杂定理拆分为子目标;
  • 使用小模型(7B)依次完成子目标 Lean 4 证明;
  • 将子目标整合为完整定理证明,并保留推理链(CoT);

2. 强化学习:形式+非形式联合训练

  • 将符号证明与自然语言推理串联;
  • 使用“正误”反馈强化模型推理与形式化能力联动;
  • 显著提升对竞赛题、高阶数学题的适应性;

3. SOTA 性能表现

  • MiniF2F-Test 集:88.9% 通过率
  • PutnamBench:解出 49/658 高难问题

三、模型下载与调用方式

模型文件(两种规模)

模型版本下载链接
DeepSeek-Prover-V2-7Bhttps://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-7B
DeepSeek-Prover-V2-671Bhttps://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B

Hugging Face 直接体验入口

https://huggingface.co/playground?modelId=deepseek-ai/DeepSeek-Prover-V2-671B&provider=novita

推荐体验平台(Novita)

https://novita.ai/referral?invited_code=A43LMN


四、数据集资源

ProverBench:325题专业数学题集

该评测集包含来自 AIME 数学竞赛、高校教材、分析代数等不同领域的题目,是目前最系统的数学推理模型评测集之一。

领域数量
AIME 24/2515
微积分/实分析120
数论/代数110
概率/复分析20
抽象代数/泛函分析60

下载地址:https://huggingface.co/datasets/deepseek-ai/DeepSeek-ProverBench


五、使用示例:自动生成 Lean 4 证明代码


from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(30)model_id = "DeepSeek-Prover-V2-7B"  # or DeepSeek-Prover-V2-671B
tokenizer = AutoTokenizer.from_pretrained(model_id)formal_statement = """
import Mathlib
import Aesopset_option maxHeartbeats 0open BigOperators Real Nat Topology Rat/-- What is the positive difference between $120\%$ of 30 and $130\%$ of 20? Show that it is 10.-/
theorem mathd_algebra_10 : abs ((120 : ℝ) / 100 * 30 - 130 / 100 * 20) = 10 := bysorry
""".strip()prompt = """
Complete the following Lean 4 code:```lean4
{}
/```Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan outlining the main proof steps and strategies.
The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the construction of the final formal proof.
""".strip()chat = [{"role": "user", "content": prompt.format(formal_statement)},
]model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
inputs = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)import time
start = time.time()
outputs = model.generate(inputs, max_new_tokens=8192)
print(tokenizer.batch_decode(outputs))
print(time.time() - start)

六、模型微调说明(高级用户)

  • 基础框架:与 DeepSeek-V3 结构兼容;
  • 上下文长度支持:最大支持 163K tokens;
  • 精度与效率平衡:支持 FP8/BF16 精度加速训练;
  • 推荐场景:Lean 4 高阶训练、大学数学 AI 助教、自动题解平台等。

七、许可证信息

  • 模型代码:MIT License
  • 模型权重:Model License(需遵循使用条款)
    详见:LICENSE-MODEL

在这里插入图片描述

八、联系方式与支持

  • GitHub 主页:https://github.com/deepseek-ai
  • 官方邮箱:service@deepseek.com
  • 交流群组:Discord / WeChat / HuggingFace Spaces 页面

如需将本模型部署为企业级数学引擎,或进行专业定制化训练,请联系 DeepSeek 团队获得商业合作通道。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/79100.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kafka的Topic分区数如何合理设置?

一、分区数设置原则 1. 并发能力基准 分区数决定最大消费者并行度,建议设置为消费者组内消费者数量的整数倍 例如:消费者组有4个实例 → 分区数设为4/8/12等 这里定义的目的是为了让消费者能均匀的分配到分区,避免打破负载均衡,…

章越科技赋能消防训练体征监测与安全保障,从传统模式到智能跃迁的实践探索

引言:智能化转型浪潮下,消防训练的“破局”之需 2021年《“十四五”国家消防工作规划》的出台,标志着我国消防救援体系正式迈入“全灾种、大应急”的全新阶段。面对地震、洪涝、危化品泄漏等复杂救援场景,消防员不仅需要更强的体…

【数据库原理及安全实验】实验五 数据库备份与恢复

指导书原文 数据库的备份与恢复SSMS 【实验目的】 1) 熟悉并掌握利用界面操作进行数据库备份和恢复的原理和操作。 【实验原理】 1) 数据库的恢复包括大容量日志恢复模式和简单恢复模式。其中大容量日志恢复模式,简单地说就是要对大容量操作进行最小日志记录&a…

Linux 基础IO(上)--文件与文件描述符fd

前言: 在生活里,我们常和各种文件打交道,像用 Word 写文档、用播放器看视频,这些操作背后都离不开文件的输入输出(I/O)。在 Linux 系统中,文件 I/O 操作更是复杂且关键。 接下来我们将深入探讨…

快速了解Go+rpc

更多个人笔记:(仅供参考,非盈利) gitee: https://gitee.com/harryhack/it_note github: https://github.com/ZHLOVEYY/IT_note 文章目录 rpc基础概念GO的rpc应用简单编写json编写rpc rpc基础概念 电商系统…

基于大模型的膀胱肿瘤全周期诊疗方案研究报告

目录 一、引言 1.1 研究背景与意义 1.2 研究目的与方法 1.3 国内外研究现状 二、大模型预测膀胱肿瘤的原理与技术基础 2.1 大模型介绍 2.2 预测原理 2.3 技术支撑 三、术前风险预测与准备方案 3.1 肿瘤分期与恶性程度预测 3.2 患者身体状况评估 3.3 术前准备工作 …

2025年4月个人工作生活总结

本文为 2025年4月工作生活总结。 研发编码 一个项目的临时记录 自2月份领导让我牵头负责一个项目起,在本月算是有较多时间投入——但也是与之前的相比。 月初,清明节前一晚上,因某事务被叫上参加临时紧急远程会议,几方领导都在…

Python爬虫实战:获取软科网最新特定专业大学排名数据并做分析,为高考填报志愿做参考

一、引言 在高考升学的重要阶段,志愿填报成为考生和家长关注的核心问题。准确、全面且具有权威性的大学专业排名数据,是考生做出科学志愿决策的关键依据。软科网作为专业的大学排名信息发布平台,其发布的计算机科学与技术专业排名数据,因具有较高的公信力和参考价值,备受…

自学S32k144(18)————芯片锁死问题及成功解锁流程

1.锁死原因 温度过高flash异常操作静电等电压异常问题。。。。 本人出现情况:之前开发板不知什么原因,发生短路,重新置换芯片后,发现芯片在S32DS中无法正常烧录 判断可能是由于焊接时温度过高导致锁死。需解锁芯片。 2.解决方法…

ISIS的由于L1产生的一系列问题

如果有些名词不清晰可以查看之前文章 L1访问其他区域使用缺省路由会引发次优路径问题,但次优路径leak路由又会引发路由环路问题,下面将会从去缺省路由到路由环路一一解决 Level 1的缺省路由 L1访问其他区域使用缺省路由 --> 引发次优路径 --> 引…

C++继承(下)

目录 一、继承与友元 二、继承与静态成员 三、菱形继承及菱形虚拟继承 1. 继承的方式 2. 菱形继承的问题 3. 菱形虚拟继承 4. 虚拟继承解决数据冗余和二义性的原理 4.1 普通菱形继承的内存布局 4.2 虚拟继承的内存布局 四、继承的总结和反思 1. 多继承的复杂性 2.…

【漫话机器学习系列】233.激活阈(Threshold Activation)

深度学习入门:了解“阈值激活函数”(Threshold Activation Function) 激活函数是神经网络中至关重要的一环。今天,我们通过一幅简单直观的手绘图,一起理解最早期也最基础的激活函数之一 —— 阈值激活函数(…

(4)python中jupyter lab使用python虚拟环境

1. 先了解IPython和IPyKernel简介 IPython 是一个功能强大的交互式 Python 解释器和开发环境。它提供了一种增强的 Python Shell,使得用户能够以交互的方式探索、分析和可视化数据。IPython 的名称来源于 "Interactive Python",体现了其交互式的特性。 IPyKernel 是…

nginx 配置要领

你提出的问题非常好!确实在配置 WebSocket 代理时,proxy_pass 的 URL 处理需要特别注意。以下是关键解释和修正建议: 1. 原配置的问题分析 location /ws/ {proxy_pass http://fastapi-container:8000; # 会保留 /ws/ 前缀传递给后端 }这种配…

【AI】DeepSeek 流程图 / 时序图制作,Word 排版错乱问题,文字转直观图形

一:动态流程图 / 时序图制作(DeepSeek Draw.IO) 工具准备 DeepSeek(AI 生成代码):官网(免费)Draw.IO(可视化渲染):官网(免费&#…

4. python3基本数据类型

Python3 中有六个标准的数据类型: Number(数字) String(字符串) List(列表) Tuple(元组) Set(集合) Dictionary(字典) Pyt…

WPF之TextBox控件详解

文章目录 1. TextBox概述2. 基本属性与功能3. 输入控制详解3.1 MaxLength3.2 AcceptsReturn3.3 AcceptsTab3.4 CharacterCasing3.5 IsUndoEnabled3.6 自定义输入限制 4. 文本选择与操作4.1 选择属性4.2 选择方法4.3 文本操作4.4 选择事件4.5 实现自定义文本处理功能 5. 滚动支持…

1.4 点云数据获取方式——结构光相机

图1-4-1结构光相机 结构光相机作为获取三维点云数据的关键设备,其工作原理基于主动式测量技术。通过投射已知图案,如条纹、点阵、格雷码等,至物体表面,这些图案会因物体表面的高度变化而发生变形。与此同时,利用相机从特定

【MATLAB第118期】基于MATLAB的双通道CNN多输入单输出分类预测方法

【MATLAB第118期】基于MATLAB的双通道CNN多输入单输出分类预测方法 一、双通道CNN简介 在深度学习领域,卷积神经网络(CNN)凭借其强大的特征提取能力,已成为图像识别、自然语言处理等任务的核心技术。传统单通道CNN在处理单一模态…

2025上海车展 | 移远通信推出自研NG-eCall QuecOpen方案,助力汽车安全新标准加速落地

4月29日,在2025上海国际汽车工业展览会期间,全球领先的物联网和车联网整体解决方案供应商移远通信宣布,正式发布自主研发的NG-eCall(下一代紧急呼叫系统)QuecOpen解决方案。 该方案凭借高度集成的软硬件协同设计&…