-  下载模型与数据模型下载: 
 huggingface:
 Qwen/Qwen2.5-7B-Instruct · HF MirrorWe’re on a journey to advance and democratize artificial intelligence through open source and open science. https://hf-mirror.com/Qwen/Qwen2.5-7B-Instruct https://hf-mirror.com/Qwen/Qwen2.5-7B-Instruct
 魔搭:
 魔搭社区汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。 https://www.modelscope.cn/models/Qwen/Qwen2.5-7B-Instruct https://www.modelscope.cn/models/Qwen/Qwen2.5-7B-Instruct
 数据下载:
 https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k
 
-  安装swift使用 pip 安装: pip install ms-swift -U从源安装: # pip install git+https://github.com/modelscope/ms-swift.gitgit clone https://github.com/modelscope/ms-swift.git cd ms-swift pip install -e .
-  微调CUDA_VISIBLE_DEVICES=0,1 \ swift sft \--model /home/models/pretrained_models/llm/Qwen2.5-7B-Instruct \ --train_type lora \--dataset /home/data/Chinese-DeepSeek-R1-Distill-data-110k-SFT/new_distill_r1_110k_sft.json \--torch_dtype bfloat16 \--num_train_epochs 6 \--per_device_train_batch_size 1 \--per_device_eval_batch_size 1 \--learning_rate 1e-4 \--lora_rank 8 \--lora_alpha 32 \--target_modules all-linear \--gradient_accumulation_steps 16 \--eval_steps 50 \--save_steps 50 \--save_total_limit 5 \--logging_steps 5 \--output_dir output \--system 'You are a deep thinking assistant.' \--warmup_ratio 0.05 \--dataloader_num_workers 4 \--model_author Q \ --model_name Q-AILab-Qwen2.5-7B-Instruct-R1-Distill
-  训练过程2张A800,训练时长5天,共训练6轮。   
-  推理效果推理: CUDA_VISIBLE_DEVICES=0,1 \ swift infer \--adapters /home/model/swift/output/v6-20250217-075043/checkpoint-50 \--stream true \--temperature 0 \--max_new_tokens 8192推理测试:
  
  
  
 
 Qwen2.5-7B-Instruct-DeepSeek-R1-Distill-data-110K 训练完成!
-  后续合并Loar、断点训练、推送模型、可参考Swift github项目地址:
        https://github.com/modelscope/ms-swift https://github.com/modelscope/ms-swift
https://github.com/modelscope/ms-swift