模型训练时报错Failed to allocate 12192768 bytes in function ‘cv::OutOfMemoryError‘

目录

报错信息:

查找网上解决方法:

改进思路:

改进方法:


报错信息:

D:\Programs\miniconda3\envs\python311\python.exe D:\python\project\VisDrone2019-DET-MOT\train.py 
Ultralytics YOLOv8.1.9 🚀 Python-3.11.7 torch-2.2.0 CUDA:0 (NVIDIA GeForce GTX 1650, 4096MiB)
engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=D:\python\project\VisDrone2019-DET-MOT\class.yaml, epochs=100, time=None, patience=50, batch=2, imgsz=900, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=train4, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train4
Overriding model.yaml nc=80 with nc=12from  n    params  module                                       arguments                     0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]             3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]             5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]           9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]                 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]                  16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]                 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 22        [15, 18, 21]  1    753652  ultralytics.nn.modules.head.Detect           [12, [64, 128, 256]]          
Model summary: 225 layers, 3013188 parameters, 3013172 gradients, 8.2 GFLOPsTransferred 319/355 items from pretrained weights
Freezing layer 'model.22.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
WARNING ⚠️ imgsz=[900] must be multiple of max stride 32, updating to [928]
train: Scanning E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\labels... 30669 images, 0 backgrounds, 0 corrupt: 100%|██████████| 30669/30669 [00:35<00:00, 875.04it/s] 
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\0000137_02220_d_0000163.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\0000140_00118_d_0000002.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\9999945_00000_d_0000114.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\9999987_00000_d_0000049.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\9999998_00219_d_0000175.jpg: 1 duplicate labels removed
train: New cache created: E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\labels.cache
val: Scanning E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\val\labels... 3394 images, 1 backgrounds, 0 corrupt: 100%|██████████| 3394/3394 [00:02<00:00, 1257.53it/s]
val: New cache created: E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\val\labels.cache
Plotting labels to runs\detect\train4\labels.jpg... 0%|          | 0/15335 [00:00<?, ?it/s]optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... 
optimizer: SGD(lr=0.01, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 928 train, 928 val
Using 8 dataloader workers
Logging results to runs\detect\train4
Starting training for 100 epochs...Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/100      2.56G        nan        nan        nan         77        928: 100%|██████████| 15335/15335 [1:25:43<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.67it/s]all       3394     158168    0.00413   1.32e-05    0.00208   0.000415Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/100      3.19G        nan        nan        nan         44        928: 100%|██████████| 15335/15335 [1:25:33<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00401   1.32e-05    0.00203   0.000406Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/100       2.1G        nan        nan        nan        134        928: 100%|██████████| 15335/15335 [1:25:26<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00154   1.14e-05   0.000779   7.79e-05Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/100      3.26G        nan        nan        nan         99        928: 100%|██████████| 15335/15335 [1:26:01<00:00,  2.97it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.55it/s]all       3394     158168    0.00409   1.32e-05    0.00206   0.000412Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/100      3.16G        nan        nan        nan         90        928: 100%|██████████| 15335/15335 [1:25:27<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.000330%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/100      2.25G        nan        nan        nan         85        928: 100%|██████████| 15335/15335 [1:25:42<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.54it/s]all       3394     158168     0.0043   1.32e-05    0.00216   0.000343Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/100      3.53G        nan        nan        nan         39        928: 100%|██████████| 15335/15335 [1:25:29<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.68it/s]all       3394     158168    0.00401   1.32e-05    0.00202   0.000322Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/100      2.61G        nan        nan        nan         28        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168     0.0016   1.14e-05    0.00081   0.000162Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/100       3.4G        nan        nan        nan        109        928: 100%|██████████| 15335/15335 [1:25:51<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.54it/s]all       3394     158168    0.00419   1.32e-05    0.00211   0.000338Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/100      2.79G        nan        nan        nan         35        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168     0.0016   1.14e-05    0.00081    8.1e-050%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size11/100      3.68G        nan        nan        nan        193        928: 100%|██████████| 15335/15335 [1:25:28<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.65it/s]all       3394     158168    0.00163   1.14e-05   0.000826   8.26e-050%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size12/100      3.38G        nan        nan        nan         41        928: 100%|██████████| 15335/15335 [1:25:48<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.55it/s]all       3394     158168    0.00419   1.32e-05    0.00211   0.0003380%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size13/100      3.09G        nan        nan        nan         72        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.71it/s]all       3394     158168    0.00427   1.32e-05    0.00215   0.000346Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size14/100      2.11G        nan        nan        nan        135        928: 100%|██████████| 15335/15335 [1:25:26<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.000330%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size15/100       3.5G        nan        nan        nan         35        928: 100%|██████████| 15335/15335 [1:26:21<00:00,  2.96it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.54it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.00033Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size16/100       3.1G        nan        nan        nan         29        928: 100%|██████████| 15335/15335 [1:25:27<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00405   1.32e-05    0.00204   0.000323Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size17/100      2.52G        nan        nan        nan          9        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.71it/s]all       3394     158168    0.00405   1.32e-05    0.00204   0.0003230%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size18/100      3.05G        nan        nan        nan         46        928: 100%|██████████| 15335/15335 [1:25:26<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.000330%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size19/100      2.82G        nan        nan        nan         74        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00427   1.32e-05    0.00215   0.000346Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size20/100      2.88G        nan        nan        nan        108        928: 100%|██████████| 15335/15335 [1:25:24<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00423   1.32e-05    0.00213   0.0003390%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size21/100      3.52G        nan        nan        nan        102        928:  84%|████████▎ | 12806/15335 [1:11:20<14:05,  2.99it/s]
Traceback (most recent call last):File "D:\python\project\VisDrone2019-DET-MOT\train.py", line 20, in <module>results = model.train(data=r"D:\python\project\VisDrone2019-DET-MOT\class.yaml", imgsz=900, epochs=100, batch=2,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\engine\model.py", line 601, in trainself.trainer.train()File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\engine\trainer.py", line 208, in trainself._do_train(world_size)File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\engine\trainer.py", line 358, in _do_trainfor i, batch in pbar:File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\tqdm\std.py", line 1182, in __iter__for obj in iterable:File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\build.py", line 49, in __iter__yield next(self.iterator)^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\dataloader.py", line 631, in __next__data = self._next_data()^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\dataloader.py", line 1346, in _next_datareturn self._process_data(data)^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\dataloader.py", line 1372, in _process_datadata.reraise()File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\_utils.py", line 722, in reraiseraise exception
cv2.error: Caught error in DataLoader worker process 2.
Original Traceback (most recent call last):File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\_utils\worker.py", line 308, in _worker_loopdata = fetcher.fetch(index)^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in fetchdata = [self.dataset[idx] for idx in possibly_batched_index]^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in <listcomp>data = [self.dataset[idx] for idx in possibly_batched_index]~~~~~~~~~~~~^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\base.py", line 251, in __getitem__return self.transforms(self.get_image_and_label(index))^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\base.py", line 257, in get_image_and_labellabel["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index)^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\base.py", line 157, in load_imageim = cv2.imread(f)  # BGR^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\utils\patches.py", line 26, in imreadreturn cv2.imdecode(np.fromfile(filename, np.uint8), flags)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
cv2.error: OpenCV(4.9.0) D:\a\opencv-python\opencv-python\opencv\modules\core\src\alloc.cpp:73: error: (-4:Insufficient memory) Failed to allocate 12192768 bytes in function 'cv::OutOfMemoryError'Process finished with exit code 1

查找网上解决方法:

改进思路:

报错OutOfMemoryError是说内存不足,上述方法本质上就是将图片缩小

改进方法:

模型训练时把epochs改小,这里下调到20,将图片大小imgsz改小

if __name__ == '__main__':os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"# 加载模型# model = YOLO("yolov8n.yaml")  # 从头开始构建新模型model = YOLO("yolov8n.pt")  # 加载预训练模型(推荐用于训练)# Use the modelresults = model.train(data="class.yaml", imgsz=1120, epochs=20, batch=4, device=0)  # 训练模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/2673.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

php 获取网页数据

PHP preg_match_all() 函数 | 菜鸟教程 $arr preg_match_all(/<li>(.*)<\/li>/U,$file1,$mat);$arr $mat[0];

Java设计模式_适配器模式

基础 适配器模式&#xff08;Adapter Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许接口不兼容的类能够一起工作。适配器模式通过创建一个包装类来实现这种兼容性&#xff0c;这个包装类包含了需要的目标接口&#xff0c;并持有一个适配者对象&#xff0c;以便进…

【Linux】gdb的简单使用

文章目录 一、gdb是什么&#xff1f;二、使用说明1. 安装2. 注意事项3. 常用调试指令3.1 gdb3.2 l3.3 r3.4 n3.5 s3.6 b3.7 info b3.8 finish3.9 p3.10 set var3.11 c3.12 d breakpoints3.13 d n3.14 disable/enable breakpoints3.15 disable/enable n3.16 info b3.17 display …

Supervisor答疑

引言 supervisor可以管理多个进程&#xff0c;安装也比较简单&#xff0c;可以使用apt或者是pip。 推荐使用apt安装。 问题 pip卸载问题 一开始的时候&#xff0c;这个机器并不是我安装的&#xff0c;但是能从pip列表中发现已安装&#xff0c; 但用pip卸载的时候&#xff0…

复习python函数

复习python函数 1.对函数的理解函数的传递方式返回值 return可通过help()函数查看函数说明作用域 2.不定长参数3.递归4.高阶函数将函数作为参数传递将函数作为返回值返回 5.匿名函数6.装饰器 1.对函数的理解 函数可以用来保存一些可执行的代码&#xff0c;并且可以在需要时&am…

macOS - OpenXSpell

文章目录 OpenXSpell、Xspell、OpenSpell使用 Xspell 本文翻译自&#xff1a;http://openxspell.sourceforge.net/ openxspell 源码&#xff1a;https://sourceforge.net/projects/openxspell/ OpenXSpell、Xspell、OpenSpell OpenXSpell 是 Mac 上的开源拼写检查工具。 从 OS…

如何给word中的拼音加声调?分享3个方法

一&#xff0c;前言 在Word文档中标注拼音声调&#xff0c;是许多人在处理中文文档时经常需要面对的问题。对于不熟悉拼音的人来说&#xff0c;这可能会是一个挑战。但是&#xff0c;通过掌握一些简单的步骤和技巧&#xff0c;我们可以轻松地在Word文档中标注拼音声调。 二&a…

wsl2 中docker安装完毕后无法正常启动

wsl2 中docker安装完毕后无法正常启动 1、背景2、目标3、环境4、原因4、操作5.1、查看配置5.2、 切换配置5.3、启动docker5.4、验证docker 1、背景 在win10中安装wsl2体验linux操作系统&#xff0c;按照docker官网步骤安装&#xff0c;安装完毕后面提示 $ docker ps Cannot co…

开源模型应用落地-LangChain高阶-集成vllm-QWen1.5(一)

一、前言 通过langchain框架调用本地模型,使得用户可以直接提出问题或发送指令,而无需担心具体的步骤或流程。vLLM是一个快速且易于使用的LLM推理和服务库。通过两者的结合,可以更好地处理对话,提供更智能、更准确的响应,从而提高对话系统的性能和用户体验。 二、术语 2.…

笨蛋学C++【C++基础第六弹】

C基础第六弹 C面向对象1.C类 & 对象1.1C类定义1.2C对象1.3访问数据成员1.4类成员函数1.5类访问修饰符公有public成员私有private成员受保护protected成员继承中的特点 1.6构造函数 & 析构函数类的构造函数带参数的构造函数使用初始化列表来初始化字段类的析构函数 1.7拷…

【软件工程中的螺旋模型】

文章目录 一、什么是螺旋模型&#xff1f;二、螺旋模型的工作流程1. 计划阶段2. 需求分析阶段3. 设计阶段4. 实施阶段5. 验证与确认阶段6. 进化阶段 三、螺旋模型的优点四、螺旋模型的缺点 一、什么是螺旋模型&#xff1f; 螺旋模型是一种风险驱动的软件开发过程模型&#xff…

云计算中的过度授权:安全隐患与应对策略

云计算凭借其弹性、可扩展等优势&#xff0c;已经成为诸多企业组织拓展业务的重要基础设施之一。然而&#xff0c;与传统IT架构相比&#xff0c;云计算环境的安全管理也面临着新的挑战。过度授权 (Overprivileging) 便是云安全领域亟待解决的主要问题之一&#xff0c;本文将带领…

为什么我的 Mac 运行缓慢以及如何使用CleanMyMac X修复它

近些年伴随着苹果生态的蓬勃发展&#xff0c;越来越多的用户开始尝试接触Mac电脑。然而很多人上手Mac后会发现&#xff0c;它的使用逻辑与Windows存在很多不同&#xff0c;而且随着使用时间的增加&#xff0c;一些奇奇怪怪的文件也会占据有限的磁盘空间&#xff0c;进而影响使用…

Linux笔记之more命令分页显示内容

Linux笔记之more命令分页显示内容 code review! —— 2024-04-20 在 Unix 和类 Unix 操作系统中&#xff08;如 Linux、macOS&#xff09;&#xff0c;more 命令是一个用于分页显示文本文件内容的工具。其基本功能是将长文本分割成逐页显示&#xff0c;用户可以逐页浏览而…

iOS 将字符串分割成单个字符| 字符串转成数组

iOS开发中我们常常需要对字符串进行出去,例如分割,通常都是有个参照物进行分割 例如: https://www.xxx.xxx?namezhangshan iOS需要取出zhangsan的值,就需要用参照物“name”进行分割,右边为张三,左边为其他字符串 OC自带的分割api是 componentsSeparatedByString:"&qu…

jasypt组件死锁bug案例分享

事故描述 1、上午9.55发布了一个Apollo动态配置参数&#xff1b; 2、片刻后&#xff0c;服务器接口开始出现大量的超时告警&#xff0c;似乎是某资源被耗尽不足分配&#xff1b; 3、正值业务请求高峰的上午十点&#xff08;平台上午10点会有一些活动会拉一波用户流量&#x…

Vue3中使用i18n,this.$t报错

方案一 //需要把$t手动挂载到全局 //main.js app.config.globalProperties.$t i18n.global.t //需要使用的时候在组件里引用 import { getCurrentInstance } from vue const _this getCurrentInstance().appContext.config.globalProperties console.log($i18n,_this.$…

HTML表单(详解网页表单如何实现)

目录 一、表单介绍 1.概念 二、表单用法 1.HTML表单 2.HTML 表单 - 输入元素 2.1.文本域&#xff08;Text Fields&#xff09; 2.2.密码字段 2.3.单选按钮&#xff08;Radio Buttons&#xff09; 2.4.复选框&#xff08;Checkboxes&#xff09; 2.5.提交按钮(Submit)…

人人都是开发者的时代,学编程还有用吗?

欢迎大家在 GitHub 上 Star 我们&#xff1a; 分布式全链路因果学习系统 OpenASCE: https://github.com/Open-All-Scale-Causal-Engine/OpenASCE 大模型驱动的知识图谱 OpenSPG: https://github.com/OpenSPG/openspg 大规模图学习系统 OpenAGL: https://github.com/TuGraph-…

qt_standard_project_setup

qt_standard_project_setup的更先进的国际化。 这个camke命令的官方说明是&#xff1a;项目范围默认标准设置。 该命令在Qt6包的Core组件中定义&#xff0c;可以像这样加载: find_package(Qt6 REQUIRED COMPONENTS Core)这个命令是在Qt 6.3中引入的 qt_standard_project_set…