《Python星球日记》 第54天:卷积神经网络进阶

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》
创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)

目录

    • 一、深度CNN架构解析
      • 1. LeNet-5(1998)
      • 2. AlexNet(2012)
      • 3. VGG(2014)
      • 4. ResNet(2015)
      • 5. CNN架构演化与对比
    • 二、数据增强技术
      • 1. 数据增强的核心原理
      • 2. 常见的数据增强技术
        • 几何变换
        • 颜色和强度变换
      • 3. 使用Keras实现数据增强
      • 4. 数据增强的最佳实践
    • 三、Dropout与Batch Normalization
      • 1. Dropout技术
        • 工作原理
        • Dropout的优势
        • 使用建议
      • 2. Batch Normalization
        • 工作原理
        • Batch Normalization的优势
        • 使用建议
      • 3. Dropout与BN的结合使用
    • 四、CIFAR-10图像分类实战
      • 1. 数据集介绍
      • 2. 数据预处理
      • 3. 构建ResNet模型
      • 4. 模型训练与评估
      • 5. 结果可视化
      • 6. 可视化特征图
    • 五、总结与展望
      • 学习资源
      • 下一步学习方向

👋 专栏介绍: Python星球日记专栏介绍(持续更新ing)
上一篇: 《Python星球日记》 第53天:卷积神经网络(CNN)入门

欢迎来到Python星球的第54天!🪐

昨天我们学习了卷积神经网络的基础知识,今天我们将深入探索更高级的CNN架构和技术,这些知识将帮助你构建更强大、更准确的图像识别模型。

一、深度CNN架构解析

随着深度学习的发展,卷积神经网络的架构也变得越来越复杂和强大。让我们来了解几个里程碑式的CNN架构。

在这里插入图片描述

1. LeNet-5(1998)

LeNet-5是由Yann LeCun开发的最早的CNN架构之一,主要用于手写数字识别。

LeNet-5 虽然结构简单,但奠定了现代CNN的基础,包含了卷积层池化层全连接层的组合。它的设计思想是通过卷积提取特征,通过池化减少参数,最后通过全连接层进行分类。

2. AlexNet(2012)

AlexNet是深度学习复兴的标志性架构,在2012年的ImageNet竞赛中以显著优势获胜。

AlexNet的主要创新点:

  • 使用ReLU激活函数替代传统的Sigmoid,减缓了梯度消失问题
  • 引入Dropout来防止过拟合
  • 使用GPU加速训练,这使得更深的网络成为可能
  • 数据增强技术的广泛应用

3. VGG(2014)

VGG网络由牛津大学Visual Geometry Group提出,以其简洁统一的结构著称。

VGG的主要特点:

  • 使用小尺寸卷积核(3×3)替代大尺寸卷积核,通过叠加多层实现更大的感受野
  • 网络结构统一,易于理解和扩展
  • 具有多个变体(VGG-16, VGG-19等),深度不同
  • 参数量大,需要更多的计算资源

4. ResNet(2015)

残差网络(ResNet)解决了深度网络训练中的梯度消失/爆炸问题,使得训练超过100层的网络成为可能。

ResNet的核心创新是引入了残差块(Residual Block),它通过添加跳跃连接(Skip Connection),允许信息直接从前层传递到后层,大大缓解了梯度消失问题。

在这里插入图片描述

残差块的数学表达式为: F(x) + x,其中F(x)是需要学习的残差映射,x是输入特征。这种简单而优雅的设计使网络能够学习残差而非完整映射,大大简化了训练过程。

5. CNN架构演化与对比

随着时间的推移,CNN架构变得越来越深,性能也越来越强:

网络名称年份层数参数量Top-5错误率(ImageNet)主要创新点
LeNet-51998560K-基础CNN结构
AlexNet2012862M15.3%ReLU, Dropout, 数据增强
VGG-16201416138M7.3%小卷积核堆叠, 统一结构
ResNet-5020155025.6M3.6%残差连接
ResNet-152201515260M3.57%超深网络

我们可以看到,深度增加的同时,现代网络通过特殊设计(如残差连接)实现了参数量的相对控制

二、数据增强技术

数据增强是解决过拟合和提高模型泛化能力的重要技术,尤其在训练数据有限的情况下。

1. 数据增强的核心原理

在这里插入图片描述

数据增强通过对原始图像进行各种变换,生成新的训练样本,从而:

  • 扩大训练集规模
  • 增加数据多样性
  • 提高模型对各种变化的鲁棒性
  • 减少过拟合

2. 常见的数据增强技术

几何变换

在这里插入图片描述

  1. 水平翻转(Horizontal Flip)

    • 将图像左右翻转
    • 特别适合对称物体,如人脸、车辆等
    • 代码实现:tf.image.flip_left_right(image)
  2. 旋转(Rotation)

    • 将图像按一定角度旋转
    • 通常使用较小的角度(如±15°)避免信息丢失
    • 代码实现:tf.image.rot90(image, k=1) (旋转90度)
  3. 随机裁剪(Random Crop)

    • 从原图中随机裁剪一部分作为训练样本
    • 能够强制模型关注图像的不同部分
    • 代码实现:tf.image.random_crop(image, [height, width, 3])
颜色和强度变换
  1. 亮度和对比度调整

    • 随机改变图像的亮度和对比度
    • 提高模型对不同光照条件的适应能力
    • 代码实现:
      # 随机调整亮度
      image = tf.image.random_brightness(image, max_delta=0.2)
      # 随机调整对比度
      image = tf.image.random_contrast(image, lower=0.8, upper=1.2)
      
  2. 色调和饱和度调整

    • 改变图像的色调和饱和度
    • 增强模型对颜色变化的鲁棒性
    • 代码实现:
      # 随机调整色调
      image = tf.image.random_hue(image, max_delta=0.2)
      # 随机调整饱和度
      image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
      

在这里插入图片描述

3. 使用Keras实现数据增强

Keras提供了便捷的ImageDataGenerator类来实现数据增强:

from tensorflow.keras.preprocessing.image import ImageDataGenerator# 创建数据增强器
data_augmentation = ImageDataGenerator(rotation_range=15,       # 旋转范围(0-180)width_shift_range=0.1,   # 水平平移范围height_shift_range=0.1,  # 垂直平移范围horizontal_flip=True,    # 水平翻转zoom_range=0.1,          # 缩放范围shear_range=0.1,         # 剪切变换范围brightness_range=[0.8, 1.2], # 亮度调整范围fill_mode='nearest'      # 填充模式
)# 应用到训练数据
train_generator = data_augmentation.flow(x_train, y_train,batch_size=32
)# 训练模型
model.fit(train_generator,steps_per_epoch=len(x_train) // 32,epochs=50
)

4. 数据增强的最佳实践

  • 保持标签一致性:确保增强后的图像仍然与原来的标签相符
  • 适度使用:过度增强可能引入不必要的噪声
  • 领域相关:根据特定任务选择合适的增强方法(例如医学图像可能不适合颜色变换)
  • 实时增强:在训练过程中动态生成增强图像,而不是预先生成
  • 验证集不增强:只对训练集应用数据增强,验证集保持原样以准确评估模型性能

三、Dropout与Batch Normalization

在深度神经网络中,DropoutBatch Normalization是两种重要的正则化和优化技术。

在这里插入图片描述

1. Dropout技术

Dropout是一种简单而有效的正则化技术,主要用于防止神经网络过拟合

在这里插入图片描述

工作原理

Dropout在训练过程中随机关闭(设置为0)一定比例的神经元,强制网络学习更加鲁棒的特征表示。具体来说:

  1. 训练阶段:以概率p随机断开神经元连接

    # Dropout层,p=0.5表示有50%的神经元会被随机关闭
    model.add(Dropout(0.5))
    
  2. 测试阶段:所有神经元都参与计算,但输出会乘以(1-p)进行缩放,以补偿训练时丢弃的神经元

Dropout的优势
  • 防止过拟合:通过随机丢弃神经元,避免网络对训练数据的过度记忆
  • 提高鲁棒性:迫使网络学习多样化的特征,不依赖于特定的神经元组合
  • 实现了集成学习:相当于同时训练多个不同的子网络,并在测试时进行平均
  • 降低神经元间的共适应性:防止神经元之间形成强依赖关系
使用建议
  • 合适的丢弃率:通常设置为0.2-0.5,较大的网络可以使用较高的丢弃率
  • 放置位置:一般放在全连接层之后,卷积层之后较少使用
  • 不在测试时使用:测试阶段应关闭Dropout功能

2. Batch Normalization

Batch Normalization (BN)是一种网络层,用于标准化每一层的输入,从而加速训练过程并提高模型性能。

工作原理

Batch Normalization通过以下步骤对每个mini-batch的特征进行标准化:

  1. 计算批次均值:μᵦ = (1/m) Σᵢ₌₁ᵐ xᵢ
  2. 计算批次方差:σ²ᵦ = (1/m) Σᵢ₌₁ᵐ (xᵢ - μᵦ)²
  3. 标准化:x̂ᵢ = (xᵢ - μᵦ) / √(σ²ᵦ + ε),其中ε是一个小常数,防止除零
  4. 缩放和偏移:yᵢ = γ · x̂ᵢ + β,其中γ和β是可学习的参数

在Keras中的实现:

from tensorflow.keras.layers import BatchNormalizationmodel.add(Conv2D(64, (3, 3), activation='relu'))
model.add(BatchNormalization())
Batch Normalization的优势
  • 加速训练:通过标准化每层的输入,减少了内部协变量偏移,使得优化过程更加稳定
  • 允许更高的学习率:归一化后的数据不容易产生梯度爆炸或消失
  • 减少过拟合:具有一定的正则化效果,因为每个mini-batch的统计量有微小波动
  • 降低对初始化的敏感性:减轻了权重初始化对模型训练的影响
  • 减少对Dropout的依赖:在某些情况下,BN可以部分替代Dropout的功能
使用建议
  • 放置位置:一般放在卷积层或全连接层之后,激活函数之前
  • 与激活函数的关系
    # 推荐方式:Conv -> BN -> ReLU
    model.add(Conv2D(64, (3, 3)))
    model.add(BatchNormalization())
    model.add(Activation('relu'))
    
  • 小批量大小:BN对较小的批量大小效果不佳,建议使用>=32的批量大小
  • 推理阶段:测试时使用整个训练集的均值和方差,而不是批次统计量

3. Dropout与BN的结合使用

Dropout和Batch Normalization通常可以结合使用,但需要注意顺序:

model.add(Conv2D(64, (3, 3)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.3))  # 在激活函数之后应用Dropout

研究表明,将BN放在激活函数前,将Dropout放在激活函数后效果最佳。

四、CIFAR-10图像分类实战

CIFAR-10是一个包含60,000张32×32彩色图像的数据集,分为10个类别,每类6,000张图像。这是一个很好的CNN进阶练习数据集。

1. 数据集介绍

CIFAR-10的10个类别包括:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。

# 加载CIFAR-10数据集
from tensorflow.keras.datasets import cifar10(x_train, y_train), (x_test, y_test) = cifar10.load_data()# 查看数据集形状
print(f"训练集: {x_train.shape}, {y_train.shape}")
print(f"测试集: {x_test.shape}, {y_test.shape}")

2. 数据预处理

import numpy as np
from tensorflow.keras.utils import to_categorical# 数据归一化
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0# 对标签进行one-hot编码
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)# 创建数据增强器
from tensorflow.keras.preprocessing.image import ImageDataGeneratordatagen = ImageDataGenerator(rotation_range=15,width_shift_range=0.1,height_shift_range=0.1,horizontal_flip=True,zoom_range=0.1
)# 将数据增强器应用于训练数据
datagen.fit(x_train)

3. 构建ResNet模型

让我们实现一个基于ResNet的深度CNN模型来分类CIFAR-10图像:

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation
from tensorflow.keras.layers import MaxPooling2D, AveragePooling2D, Flatten, Dense, add, Dropoutdef residual_block(x, filters, kernel_size=3, stride=1, conv_shortcut=False):"""残差块的实现"""shortcut = xif conv_shortcut:shortcut = Conv2D(filters, 1, strides=stride)(shortcut)shortcut = BatchNormalization()(shortcut)# 第一个卷积块x = Conv2D(filters, kernel_size, strides=stride, padding='same')(x)x = BatchNormalization()(x)x = Activation('relu')(x)# 第二个卷积块x = Conv2D(filters, kernel_size, padding='same')(x)x = BatchNormalization()(x)# 添加跳跃连接x = add([x, shortcut])x = Activation('relu')(x)return xdef build_resnet_model(input_shape, num_classes):"""构建ResNet模型"""inputs = Input(shape=input_shape)# 初始卷积层x = Conv2D(32, 3, padding='same')(inputs)x = BatchNormalization()(x)x = Activation('relu')(x)# 残差块x = residual_block(x, 32)x = residual_block(x, 32)x = residual_block(x, 64, stride=2, conv_shortcut=True)x = residual_block(x, 64)x = residual_block(x, 128, stride=2, conv_shortcut=True)x = residual_block(x, 128)# 全局平均池化x = AveragePooling2D(pool_size=4)(x)x = Flatten()(x)x = Dense(256)(x)x = BatchNormalization()(x)x = Activation('relu')(x)x = Dropout(0.5)(x)# 输出层outputs = Dense(num_classes, activation='softmax')(x)model = Model(inputs=inputs, outputs=outputs)return model# 构建模型
model = build_resnet_model((32, 32, 3), 10)# 编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy']
)# 打印模型结构
model.summary()

4. 模型训练与评估

from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler, ReduceLROnPlateau# 学习率调度器
def lr_schedule(epoch):lr = 0.001if epoch > 75:lr *= 0.1if epoch > 100:lr *= 0.1return lrlr_scheduler = LearningRateScheduler(lr_schedule)# 学习率自动调整
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.00001
)# 模型保存
checkpoint = ModelCheckpoint('best_resnet_cifar10.h5',monitor='val_accuracy',save_best_only=True,mode='max'
)# 训练模型
batch_size = 64
epochs = 120history = model.fit(datagen.flow(x_train, y_train, batch_size=batch_size),steps_per_epoch=len(x_train) // batch_size,epochs=epochs,validation_data=(x_test, y_test),callbacks=[lr_scheduler, reduce_lr, checkpoint]
)# 加载最佳模型
from tensorflow.keras.models import load_model
best_model = load_model('best_resnet_cifar10.h5')# 评估模型
score = best_model.evaluate(x_test, y_test)
print(f"测试集准确率: {score[1]*100:.2f}%")

5. 结果可视化

import matplotlib.pyplot as plt# 绘制训练历史
plt.figure(figsize=(12, 4))# 准确率曲线
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='训练准确率')
plt.plot(history.history['val_accuracy'], label='验证准确率')
plt.title('模型准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率')
plt.legend()# 损失曲线
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='训练损失')
plt.plot(history.history['val_loss'], label='验证损失')
plt.title('模型损失')
plt.xlabel('Epoch')
plt.ylabel('损失')
plt.legend()plt.tight_layout()
plt.show()# 混淆矩阵
from sklearn.metrics import confusion_matrix
import seaborn as sns# 预测测试集
y_pred = best_model.predict(x_test)
y_pred_classes = np.argmax(y_pred, axis=1)
y_true = np.argmax(y_test, axis=1)# 计算混淆矩阵
cm = confusion_matrix(y_true, y_pred_classes)# 绘制混淆矩阵
plt.figure(figsize=(10, 8))
class_names = ['飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车']
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=class_names, yticklabels=class_names)
plt.title('混淆矩阵')
plt.ylabel('真实标签')
plt.xlabel('预测标签')
plt.show()

6. 可视化特征图

查看卷积层提取的特征,帮助我们理解CNN的工作原理:

import tensorflow as tf# 创建一个模型,用于提取中间层特征
layer_outputs = [layer.output for layer in model.layers if isinstance(layer, tf.keras.layers.Conv2D)]
activation_model = tf.keras.models.Model(inputs=model.input, outputs=layer_outputs)# 选择一张测试图像
img_index = 12
test_img = x_test[img_index:img_index+1]# 获取特征图
activations = activation_model.predict(test_img)# 显示原始图像
plt.figure(figsize=(6, 6))
plt.imshow(x_test[img_index])
plt.title(f"原始图像: {class_names[y_true[img_index]]}")
plt.axis('off')
plt.show()# 可视化前两个卷积层的特征图
plt.figure(figsize=(15, 8))
for i in range(2):feature_maps = activations[i]n_features = min(16, feature_maps.shape[-1])  # 最多显示16个特征图for j in range(n_features):plt.subplot(2, 8, i*8+j+1)plt.imshow(feature_maps[0, :, :, j], cmap='viridis')plt.axis('off')if j == 0:plt.title(f"卷积层 {i+1}")plt.tight_layout()
plt.show()

五、总结与展望

在本文中,我们深入探讨了卷积神经网络的进阶内容。我们学习了从LeNet到ResNet的经典CNN架构演化,了解了数据增强的重要性和实现方法,掌握了DropoutBatch Normalization的工作原理,并通过CIFAR-10图像分类任务进行了实践。

这些进阶知识将帮助你构建更强大、更准确的卷积神经网络模型。随着深度学习的不断发展,CNN架构也在不断创新,如MobileNet(轻量级网络)、EfficientNet(自动缩放网络)等,这些都是值得进一步探索的方向。

学习资源

  1. 论文:

    • Deep Residual Learning for Image Recognition (ResNet)
    • Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
  2. 课程:

    • 吴恩达的深度学习课程(Coursera)
    • CS231n: Convolutional Neural Networks for Visual Recognition(斯坦福)
  3. 书籍:

    • 《Deep Learning》by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

下一步学习方向

  • 迁移学习:利用预训练模型加速新任务的学习
  • 目标检测:YOLO、SSD、Faster R-CNN等算法
  • 语义分割:U-Net、DeepLab等架构
  • 生成对抗网络(GANs):用于图像生成和风格迁移

希望本文对你理解卷积神经网络的进阶内容有所帮助。在下一篇文章中,我们将探索更多深度学习的前沿技术!


祝你学习愉快,Python星球的探索者!👨‍🚀🌠

创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)
如果你对今天的内容有任何问题,或者想分享你的学习心得,欢迎在评论区留言讨论!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/79377.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

旅游设备生产企业的痛点 质检系统在旅游设备生产企业的应用

在旅游设备制造行业,产品质量直接关系到用户体验与企业口碑。从景区缆车、观光车到水上娱乐设施,每一件设备的安全性与可靠性都需经过严苛检测。然而,传统质检模式常面临数据分散、流程不透明、合规风险高等痛点,难以满足旅游设备…

MySql(进阶)

一.数据库约束 约束类型 NOT NULL - 指示某列不能存储 NULL 值。 (not null不能为NILL) UNIQUE - 保证某列的每行必须有唯一的值。 (unique唯一值) DEFAULT - 规定没有给列赋值时的默认值。 (default为空给定默认值) PRIMARY…

Three.js + React 实战系列 - 联系方式提交表单区域 Contact 组件✨(表单绑定 + 表单验证)

对个人主页设计和实现感兴趣的朋友可以订阅我的专栏哦!!谢谢大家!!! 在现代网页中,一个精致的 Contact 区域不仅仅是表单的堆砌,更是用户与我们建立联系的第一印象。 在本节课中,我…

UOJ 164【清华集训2015】V Solution

Description 给定序列 a ( a 1 , a 2 , ⋯ , a n ) a(a_1,a_2,\cdots,a_n) a(a1​,a2​,⋯,an​),另有序列 h h h,初始时 h a ha ha. 有 m m m 个操作分五种: add ⁡ ( l , r , v ) \operatorname{add}(l,r,v) add(l,r,v):…

C++开发过程中的注意事项详解

目录 C++开发过程中的注意事项详解 一、内存管理:避免泄漏与资源浪费 1.1 使用智能指针管理动态内存 1.2 避免手动内存管理的陷阱 1.3 利用RAII机制管理资源 1.4 容器与内存分配 二、安全性:防御攻击与未定义行为 2.1 输入验证与安全编码 2.2 使用安全的通信协议 2…

Git 时光机:修改Commit信息

前言 列位看官都知道,Git 的每一次 git commit,其中会包含作者(Author)和提交者(Committer)的姓名与邮箱。有时可能会因为配置错误、切换了开发环境,或者只是单纯的手滑,导致 commi…

QSFP+、QSFP28、QSFP-DD接口分别实现40G、100G、200G/400G以太网接口

常用的光模块结构形式: 1)QSFP等效于4个SFP,支持410Gbit/s通道传输,可通过4个通道实现40Gbps传输速率。与SFP相比,QSFP光模块的传输速率可达SFP光模块的四倍,在部署40G网络时可直接使用QSFP光模块&#xf…

好用的播放器推荐

以下是一些好用的播放器推荐,按照不同平台和使用场景分类: 电脑端 VLC Media Player 特点:开源、跨平台,支持几乎所有的音视频格式,无需额外安装解码器。具备强大的功能,如播放列表管理、视频和音频滤镜、…

Vue基础(8)_监视属性、深度监视、监视的简写形式

监视属性(watch): 1.当被监视的属性变化时,回调函数(handler)自动调用,进行相关操作。 2.监视的属性必须存在,才能进行监视!! 3.监视的两种写法: (1).new Vue时传入watch配置 (2).通过vm.$watc…

AI服务器的作用都有哪些?

根据网络环境的飞速发展,人工智能技术逐渐入驻到各个行业当中,其中AI服务器则是一种专门用来运行人工智能算法和模型的硬件设备,通常具备高性能计算、大容量存储和并行计算等多种功能,本文就来详细讲解一下AI服务器的作用&#xf…

[250508] Linux 内核瘦身:弃用 i486 及早期 586 CPU 支持

目录 Linux 内核计划精简:将移除对古董级 CPU 的支持 Linux 内核计划精简:将移除对古董级 CPU 的支持 核心动态: Linux 内核开发社区正计划一项重要的代码清理工作,目标是移除对非常古老的 i486 及早期 586 (如早期奔腾) CPU 架构…

ROM详解

一、ROM基础原理 定义与特性 ROM(Read-Only Memory,只读存储器)是一种非易失性存储器,数据在制造或编程后永久保存,断电后不丢失。其核心特性为数据不可修改(或需特殊条件修改)。 存储原理&…

解决虚拟机挂起之后的网络问题

相信很多人都有遇到过自己在VM上面手滑点了个挂起然后就连不了网络的情况吧,我也遇到了,下面是我的解决办法,希望对大家有所帮助! 我运行完如下: 基本上出现绿色的就说明网络连上啦!

在Star-CCM+中实现UDF并引用场数据和网格数据

在Star-CCM中实现UDF并引用场数据和网格数据 Star-CCM中的用户自定义函数(UDF)允许用户通过Java或C/C编程扩展软件功能。下面我将详细介绍如何实现UDF并引用模拟数据。 1. UDF基础实现方法 1.1 创建UDF的步骤 在Star-CCM中,右键点击"工具" → “用户函…

ConnectionResetError(10054, ‘远程主机强迫关闭了一个现有的连接,Python爬虫

文章目录 ConnectionResetError(10054, 远程主机强迫关闭了一个现有的连接1.问题描述2.尝试的解决方法(均未生效)2.1 请求重试机制2.2 模拟浏览器请求头2.3 关闭连接资源2.4 延迟访问 3.解决方案:使用 proxy_pool IP 代理池最后参考文章 Conn…

Redis相关命令详解与原理(一)

目录 Redis是什么? Redis 的特点和功能 Redis工作模式 与MySQL的区别 安装编译和启动 redis的value类型编码 string类型 基础命令 应用 1.对象存储 2.累加器 3.分布式锁 4.位运算 list类型 基础命令 应用 1.栈(先进后出 FILO&#xff0…

Starrocks 的 ShortCircuit短路径

背景 本文基于 Starrocks 3.3.5 本文主要来探索一下Starrocks在FE端怎么实现 短路径,从而加速点查查询速度。 在用户层级需要设置 enable_short_circuit 为true 分析 数据流: 直接到StatementPlanner.createQueryPlan方法: ... OptExpres…

Oracle非归档模式遇到文件损坏怎么办?

昨天夜里基地夜班的兄弟,打电话说有个报表库连不上了,赶紧起来连上VPN查看一下,看到实例宕机了,先赶紧startup起来。 1.查看报错信息 环境介绍:Redhat 6.9 Oracle 11.2.0.4 No Archive Mode 查看alert log 关键报…

关于一些平时操作系统或者软件的步骤转载

关于一些平时操作系统或者软件的步骤转载 关于python环境搭建 关于Ubuntu 1. 双系统之Ubuntu快速卸载 2. VMware安装Ubuntu虚拟机实现COpenCV代码在虚拟机下运行教程 3. ubuntu 下 opencv的安装以及配置(亲测有效) 4. Ubuntu将c编译成.so文件并测试 5…

hz2新建Keyword页面

新建一个single-keywords.php即可,需要筛选项再建taxonomy-knowledge-category.php 参考:https://www.tkwlkj.com/customize-wordpress-category-pages.html WordPress中使用了ACF创建了自定义产品分类products,现在想实现自定义产品分类下的…