黑马点评day02(缓存)

2、商户查询缓存

2.1 什么是缓存?

前言:什么是缓存?

就像自行车,越野车的避震器

img

举个例子:越野车,山地自行车,都拥有"避震器",防止车体加速后因惯性,在酷似"U"字母的地形上飞跃,硬着陆导致的损害,像个弹簧一样;

同样,实际开发中,系统也需要"避震器",*防止过高的数据访问猛冲系统,导致其操作线程无法及时处理信息而瘫痪;*

这在实际开发中对企业讲,对产品口碑,用户评价都是致命的;所以企业非常重视缓存技术;

缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码(例如:

例1:static final ConcurrentHashMap<K,V> map = new ConcurrentHashMap<>(); 本地用于高并发
•
例2:static final Cache<K,V> USER_CACHE = CacheBuilder.newBuilder().build(); 用于redis等缓存
•
例3:static final Map<K,V> map =  new HashMap(); 本地缓存

由于其被Static修饰,所以随着类的加载而被加载到内存之中,作为本地缓存,由于其又被final修饰,所以其引用(例3:map)和对象(例3:new HashMap())之间的关系是固定的,不能改变,因此不用担心赋值(=)导致缓存失效;

2.1.1 为什么要使用缓存 一句话:因为速度快,好用

缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力

实际开发过程中,企业的数据量,少则几十万,多则几千万,这么大数据量,如果没有缓存来作为"避震器",系统是几乎撑不住的,所以企业会大量运用到缓存技术;但是缓存也会增加代码复杂度和运营的成本:

img

2.1.2 如何使用缓存

实际开发中,会构筑多级缓存来使系统运行速度进一步提升,例如:本地缓存与redis中的缓存并发使用

浏览器缓存:主要是存在于浏览器端的缓存

应用层缓存:可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存

数据库缓存:在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中CPU缓存:当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存

img

2.2 添加商户缓存

在我们查询商户信息时,我们是直接操作从数据库中去进行查询的,大致逻辑是这样,直接查询数据库那肯定慢咯,所以我们需要增加缓存。

@GetMapping("/{id}")
public Result queryShopById(@PathVariable("id") Long id) {//这里是直接查询数据库return shopService.queryById(id);
}
2.2.1 、缓存模型和思路

*标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。*

img

2.1.2、代码如下

代码思路:如果缓存有,则直接返回,如果缓存不存在,则查询数据库,然后存入redis。

❖ 代码——查询缓存与数据库

img

2.3 缓存更新策略 缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适。

内存淘汰:redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)

超时剔除:当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存

主动更新:我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题

img

2.3.1 、数据库缓存不一致解决方案: 由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在,其后果是:

用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢?有如下几种方案:

Cache Aside Pattern 人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案

Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理

Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致

img

#####

2.3.2 、数据库和缓存不一致采用什么方案

综合考虑使用方案一,但是方案一调用者如何处理呢?这里有几个问题

操作缓存和数据库时有三个问题需要考虑:

如果采用第一个方案,那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大,我们可以把缓存删除,等待再次查询时,将缓存中的数据加载出来

  • 删除缓存还是更新缓存?
    • 更新缓存:每次更新数据库都更新缓存,无效写操作较多

    • *删除缓存:更新数据库时让缓存失效,查询时再更新缓存*

  • 如何保证缓存与数据库的操作的同时成功或失败?

    • 单体系统,将缓存与数据库操作放在一个事务

    • 分布式系统,利用TCC等分布式事务方案

应该具体操作缓存还是操作数据库,我们应当是*先操作数据库,再删除缓存*,原因在于,如果你选择第一种方案,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。

  • 先操作缓存还是先操作数据库?
    • 先删除缓存,再操作数据库

    • *先操作数据库,再删除缓存*

img

#####

2.4 实现商铺和缓存与数据库双写一致

核心思路如下:

修改ShopController中的业务逻辑,满足下面的需求:

根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间

根据id修改店铺时,先修改数据库,再删除缓存

修改重点代码1——查询添加TTL

修改ShopServiceImpl的queryById方法

设置redis缓存时添加过期时间

img

修改重点代码2——修改双写一致

代码分析:通过之前的淘汰,我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题

img

#####

2.5缓存穿透问题的解决思路

缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。(CT)

  • 常见的解决方案有两种:

  • 缓存空对象
    • 缺点:

      • 额外的内存消耗

      • 可能造成短期的不一致

    • 优点:实现简单,维护方便

  • *布隆过滤*
    • 缺点:

      • 实现复杂

      • 存在误判可能(存在的不一定存在,不存在的一定不存在)

    • 优点:内存占用较少,没有多余key

  • 缓存空对象思路分析:当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了。

  • 布隆过滤:布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,

  • 假设布隆过滤器判断这个数据不存在,则直接返回

  • 这种方式优点在于节约内存空间,存在误判,误判原因在于

  • 布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突。

  • img

2.6 编码解决商品查询的缓存穿透问题: 核心思路如下:

在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的。

现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

img

小总结:

缓存穿透产生的原因是什么?

  • 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力

  • 缓存穿透的解决方案有哪些?
    • 缓存null值

    • 布隆过滤

    • 增强id的复杂度,避免被猜测id规律

    • 做好数据的基础格式校验

    • 加强用户权限校验

    • 做好热点参数的限流(可用先限流来保底)

2.7 缓存雪崩问题及解决思路

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案:

  • 给不同的Key的TTL添加随机值

  • 利用Redis集群提高服务的可用性

  • 给缓存业务添加降级限流策略

  • 给业务添加多级缓存

img

#####

2.8 缓存击穿问题及解决思路

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。

常见的解决方案有两种:

  • 互斥锁

  • 逻辑过期

逻辑分析:

假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大

img

解决方案一、使用锁来解决:

因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。

假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

img

#####

解决方案二、逻辑过期方案

方案分析:我们之所以会出现这个缓存击穿(热点key)问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。

我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。这种方案优点在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。

img

两者方案进行对比

互斥锁方案:由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响

逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦

img

2.9 利用互斥锁解决缓存击穿问题 核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询

如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿。

img

❖ 代码——操作锁的代码: 核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。

private boolean tryLock(String key) {Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);
}
•
private void unlock(String key) {stringRedisTemplate.delete(key);
}
❖ 代码——操作代码:

  public Shop queryWithMutex(Long id)  {String key = CACHE_SHOP_KEY + id;// 1、从redis中查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get("key");// 2、判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//判断命中的值是否是空值if (shopJson != null) {//返回一个错误信息return null;}// 4.实现缓存重构//4.1 获取互斥锁String lockKey = "lock:shop:" + id;Shop shop = null;try {boolean isLock = tryLock(lockKey);// 4.2 判断否获取成功if(!isLock){//4.3 失败,则休眠重试Thread.sleep(50);return queryWithMutex(id);}//4.4 成功,根据id查询数据库shop = getById(id);// 5.不存在,返回错误if(shop == null){//将空值写入redisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);//返回错误信息return null;}//6.写入redisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);}catch (Exception e){throw new RuntimeException(e);}finally {//7.释放互斥锁unlock(lockKey);}return shop;}
3.0 、利用逻辑过期解决缓存击穿问题

需求:修改根据id查询商铺的业务,基于逻辑过期方式来解决缓存击穿问题

思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

img

如果封装数据:因为现在redis中存储的数据的value需要带上过期时间,此时要么你去修改原来的实体类,要么你

步骤一、

新建一个实体类,我们采用第二个方案,这个方案,对原来代码没有侵入性。

@Data
public class RedisData {private LocalDateTime expireTime;private Object data;
}

步骤二、

ShopServiceImpl 新增此方法,利用单元测试进行缓存预热

img

在测试类中

img

步骤三:正式代码

ShopServiceImpl

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {String key = CACHE_SHOP_KEY + id;// 1.从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isBlank(json)) {// 3.存在,直接返回return null;}// 4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(json, RedisData.class);Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);LocalDateTime expireTime = redisData.getExpireTime();// 5.判断是否过期if(expireTime.isAfter(LocalDateTime.now())) {// 5.1.未过期,直接返回店铺信息return shop;}// 5.2.已过期,需要缓存重建// 6.缓存重建// 6.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);// 6.2.判断是否获取锁成功if (isLock){CACHE_REBUILD_EXECUTOR.submit( ()->{try{//重建缓存this.saveShop2Redis(id,20L);}catch (Exception e){throw new RuntimeException(e);}finally {unlock(lockKey);}});}// 6.4.返回过期的商铺信息return shop;
}
3.1、封装Redis工具类

基于StringRedisTemplate封装一个缓存工具类,满足下列需求:

  • 方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间

  • 方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓存存击穿问题

  • 方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题

  • 方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题

  1. 将逻辑进行封装

@Slf4j
@Component
public class CacheClient {
•private final StringRedisTemplate stringRedisTemplate;
•private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
•public CacheClient(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}
•public void set(String key, Object value, Long time, TimeUnit unit) {stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);}
•public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {// 设置逻辑过期RedisData redisData = new RedisData();redisData.setData(value);redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));// 写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));}
•public <R,ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){String key = keyPrefix + id;// 1.从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(json)) {// 3.存在,直接返回return JSONUtil.toBean(json, type);}// 判断命中的是否是空值if (json != null) {// 返回一个错误信息return null;}
•// 4.不存在,根据id查询数据库R r = dbFallback.apply(id);// 5.不存在,返回错误if (r == null) {// 将空值写入redisstringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);// 返回错误信息return null;}// 6.存在,写入redisthis.set(key, r, time, unit);return r;}
•public <R, ID> R queryWithLogicalExpire(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {String key = keyPrefix + id;// 1.从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isBlank(json)) {// 3.存在,直接返回return null;}// 4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(json, RedisData.class);R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);LocalDateTime expireTime = redisData.getExpireTime();// 5.判断是否过期if(expireTime.isAfter(LocalDateTime.now())) {// 5.1.未过期,直接返回店铺信息return r;}// 5.2.已过期,需要缓存重建// 6.缓存重建// 6.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);// 6.2.判断是否获取锁成功if (isLock){// 6.3.成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit(() -> {try {// 查询数据库R newR = dbFallback.apply(id);// 重建缓存this.setWithLogicalExpire(key, newR, time, unit);} catch (Exception e) {throw new RuntimeException(e);}finally {// 释放锁unlock(lockKey);}});}// 6.4.返回过期的商铺信息return r;}
•public <R, ID> R queryWithMutex(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {String key = keyPrefix + id;// 1.从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 3.存在,直接返回return JSONUtil.toBean(shopJson, type);}// 判断命中的是否是空值if (shopJson != null) {// 返回一个错误信息return null;}
•// 4.实现缓存重建// 4.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;R r = null;try {boolean isLock = tryLock(lockKey);// 4.2.判断是否获取成功if (!isLock) {// 4.3.获取锁失败,休眠并重试Thread.sleep(50);return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);}// 4.4.获取锁成功,根据id查询数据库r = dbFallback.apply(id);// 5.不存在,返回错误if (r == null) {// 将空值写入redisstringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);// 返回错误信息return null;}// 6.存在,写入redisthis.set(key, r, time, unit);} catch (InterruptedException e) {throw new RuntimeException(e);}finally {// 7.释放锁unlock(lockKey);}// 8.返回return r;}
•private boolean tryLock(String key) {Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}
•private void unlock(String key) {stringRedisTemplate.delete(key);}
}
在ShopServiceImpl 中@Resource
private CacheClient cacheClient;
•@Overridepublic Result queryById(Long id) {// 解决缓存穿透Shop shop = cacheClient.queryWithPassThrough(CACHE_SHOP_KEY, id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);
•// 互斥锁解决缓存击穿// Shop shop = cacheClient//         .queryWithMutex(CACHE_SHOP_KEY, id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);
•// 逻辑过期解决缓存击穿// Shop shop = cacheClient//         .queryWithLogicalExpire(CACHE_SHOP_KEY, id, Shop.class, this::getById, 20L, TimeUnit.SECONDS);
•if (shop == null) {return Result.fail("店铺不存在!");}// 7.返回return Result.ok(shop);}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/78655.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

头歌禁止复制怎么解除(简单版)

被头歌数据库作业禁止复制整神之后&#xff0c;主啵尝试网上各种解除方法&#xff0c;最后发现一个最简单且最快速的解除方法。 在浏览器中搜索万能复制插件 下载完成之后就可以随便复制粘贴啦 超简单 下载只需几秒

【无基础】小白解决Docker pull时报错:https://registry-1.docker.io/v2/

Docker Compose 启动失败问题解决方案 错误描述 执行 docker compose up -d 时出现以下错误&#xff1a; [] Running 9/9✘ api Error context canceled …

【数据结构】二叉树、堆

文章目录 二叉树的概念及结构定义特殊的二叉树核心性质存储方式 二叉树的链式存储前序遍历中序遍历后序遍历层序遍历 二叉树的顺序存储父子关系的推导堆&#xff08;heap&#xff09;堆的概念向上调整算法和向下调整算法向上调整算法向下调整算法 堆的创建堆的插入堆的删除 堆的…

Vue3响应式原理那些事

文章目录 1 响应式基础:Proxy 与 Reflect1.1 Proxy 代理拦截1.2 Reflect 确保 `this` 指向正确1.2.1 修正 `this` 指向问题1.2.2 统一的操作返回值1.3 与 Vue2 的对比2 依赖收集与触发机制2.1 全局依赖存储结构:WeakMap → Map → Set2.2 依赖收集触发时机2.3 依赖收集核心实…

精选10个好用的WordPress免费主题

10个好用的WordPress免费主题 1. Astra Astra 是全球最受欢迎的WordPress免费主题。它功能丰富&#xff0c;易于使用&#xff0c;SEO友好&#xff0c;是第一个安装量突破100万的非默认主题&#xff0c;并获得了5000多个五星好评。 它完美集成了Elementor、Beaver&#xff0c;…

【SaaS多租架构】数据隔离与性能平衡

SaaS多租户架构:数据隔离与性能平衡 一、技术背景及发展二、技术特点:数据隔离与性能优化的双核心三、技术细节:实现路径与关键技术四、实际案例分析五、未来发展趋势结语一、技术背景及发展 多租户架构是云计算与SaaS(软件即服务)模式的核心技术,其核心目标是通过共享基…

部署GM DC Monitor 一体化监控预警平台

1&#xff09;首先在官网下载镜像文件 广目&#xff08;北京&#xff09;软件有限公司广目&#xff08;北京&#xff09;软件有限公司https://www.gm-monitor.com/col.jsp?id1142&#xff09;其次进行部署安装&#xff0c;教程如下&#xff1a; 1. 基础环境要求 1) 系统&…

Webug4.0靶场通关笔记15- 第19关文件上传(畸形文件)

目录 第19关 文件上传(畸形文件) 1.打开靶场 2.源码分析 &#xff08;1&#xff09;客户端源码 &#xff08;2&#xff09;服务器源码 3.渗透实战 &#xff08;1&#xff09;构造脚本 &#xff08;2&#xff09;双写绕过 &#xff08;3&#xff09;访问脚本 本文通过《…

架构思维:构建高并发读服务_热点数据查询的架构设计与性能调优

文章目录 一、引言二、热点查询定义与场景三、主从复制——垂直扩容四、应用内前置缓存4.1 容量上限与淘汰策略4.2 延迟刷新&#xff1a;定期 vs. 实时4.3 逃逸流量控制4.4 热点发现&#xff1a;被动 vs. 主动 五、降级与限流兜底六、前端&#xff0f;接入层其他应对七、模拟压…

宝塔面板运行docker的jenkins

1.在宝塔面板装docker&#xff0c;以及jenkins 2.ip:端口访问jenkins 3.获取密钥&#xff08;点击日志&#xff09; 4.配置容器内的jdk和maven环境&#xff08;直接把jdk和maven文件夹放到jenkins容器映射的data文件下&#xff09; 点击容器-->管理-->数据存储卷--.把相…

C语言 ——— 函数

目录 函数是什么 库函数 学习使用 strcpy 库函数 自定义函数 写一个函数能找出两个整数中的最大值 写一个函数交换两个整型变量的内容 牛刀小试 写一个函数判断一个整数是否是素数 写一个函数判断某一年是否是闰年 写一个函数&#xff0c;实现一个整型有序数组的二分…

笔记本电脑升级计划(2017———2025)

ThinkPad T470 (2017) vs ThinkBook 16 (2025) 完整性能对比报告 一、核心硬件性能对比 1. CPU性能对比&#xff08;i5-7200U vs Ultra9-285H&#xff09; 参数i5-7200U (2017)Ultra9-285H (2025)提升百分比核心架构2核4线程 (Skylake)16核16线程 (6P8E2LPE)700%核心数制程工…

具身系列——PPO算法实现CartPole游戏(强化学习)

完整代码参考&#xff1a; https://gitee.com/chencib/ailib/blob/master/rl/ppo_cartpole.py 执行结果&#xff1a; 部分训练得分&#xff1a; (sd) D:\Dev\traditional_nn\feiai\test\rl>python ppo_cartpole_v2_succeed.py Ep: 0 | Reward: 23.0 | Running: 2…

Python项目源码60:电影院选票系统1.0(tkinter)

1.功能特点&#xff1a;通常选票系统应该允许用户选择电影、场次、座位&#xff0c;然后显示总价和生成票据。好的&#xff0c;我得先规划一下界面布局。 首先&#xff0c;应该有一个电影选择的列表&#xff0c;可能用下拉菜单Combobox来实现。然后场次时间&#xff0c;可能用…

【全队项目】智能学术海报生成系统PosterGenius--图片布局生成模型LayoutPrompt(2)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;大模型实战训练营_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前…

Linux的时间同步服务器(附加详细实验案例)

一、计时方式的发展 1.古代计时方式​ 公元前约 2000 年&#xff1a;古埃及人利用光线留下的影子计时&#xff0c;他们修建高耸的大型方尖碑&#xff0c;通过追踪方尖碑影子的移动判断时间&#xff0c;这是早期利用自然现象计时的典型方式 。​商朝时期&#xff1a;人们开发并…

【无需docker】mac本地部署dify

环境安装准备 #安装 postgresql13 brew install postgresql13 #使用zsh的在全局添加postgresql命令集 echo export PATH"/usr/local/opt/postgresql13/bin:$PATH" >> ~/.zshrc # 使得zsh的配置修改生效 source ~/.zshrc # 启动postgresql brew services star…

(5)概述 QT 的元对象系统里的类的调用与联系,及访问接口

&#xff08;1&#xff09; QT 的元对象系统&#xff0c;这几个字大家都知道&#xff0c;那么 QT 的元对象系统里都包含哪些内容呢&#xff0c;其访问接口是如何呢&#xff1f; 从 QObject 类的实现里&#xff0c;从其数据成员里就可以看出来&#xff1a; QT 里父容器可以释放其…

打包 Python 项目为 Windows 可执行文件:高效部署指南

Hypackpy 是一款由白月黑羽开发的 Python 项目打包工具&#xff0c;它与 PyInstaller 等传统工具不同&#xff0c;通过直接打包解释器环境和项目代码&#xff0c;并允许开发者修改配置文件以排除不需要的内容&#xff0c;从而创建方便用户一键运行的可执行程序。以下是使用 Hyp…

MySQL JOIN详解:掌握数据关联的核心技能

一、为什么需要JOIN&#xff1f; 在关系型数据库中&#xff0c;数据通常被拆分到不同的表中以提高存储效率。当我们需要从多个表中组合数据时&#xff0c;JOIN操作就成为了最关键的技能。通过本文&#xff0c;您将全面掌握MySQL中7种JOIN操作&#xff0c;并学会如何在实际场景中…