业务相关

目录

一、Spark

1.spark主要用来计算什么? 随便说段代码

2.spark 运行命令说一个,平常用哪些参数,怎么考虑的

3.spark shuffle的代码有哪些,平日哪些操作涉及到shuffle了

4.计算中遇到最难解决的是什么?

5.Spark 调过哪些参数

二、Hive

1.压缩格式比较

2.动态分区和指定分区的对比

3.计算最复杂的业务逻辑是什么

4.小文件治理怎么搞

5.再平衡怎么搞

6.开窗函数有哪些,用于哪里

7.关于数组的函数

8.hdfs block块大小默认是多少,调过吗?什么情况下调整?

三、数据仓库

1.有多少表,表的数据量是多少

2.模型设计怎么做的(数据分层怎么做的)

3.高频数据怎么做的

4.有哪些主题域 有哪些实体 有哪些维度

5.每日增量数据有多少

6.缓慢变化维的应用

7.拉链表的应用,拉链表的增量/全量统计

8.sqoop的同步效率

9.sqoop的数据倾斜

四、Python

1.pandas如何处理大规模数据

2.如何提高高并发

3.协程 进程 线程 

4.Fast Api 和 Flask

5.增量同步怎么做 全量同步怎么做 

6.Python 深拷贝 浅拷贝的使用场景


一、Spark

1.spark主要用来计算什么? 随便说段代码

2.spark 运行命令说一个,平常用哪些参数,怎么考虑的

3.spark shuffle的代码有哪些,平日哪些操作涉及到shuffle了

4.计算中遇到最难解决的是什么?

Impala连接打满

5.Spark 调过哪些参数

二、Hive

1.压缩格式比较

2.动态分区和指定分区的对比

3.计算最复杂的业务逻辑是什么

4.小文件治理怎么搞

5.再平衡怎么搞

6.开窗函数有哪些,用于哪里

7.关于数组的函数

8.hdfs block块大小默认是多少,调过吗?什么情况下调整?

  • 默认128M 可调 
  • 小文件处理:若存储大量小文件(如日志),调小块大小(如64MB)可减少存储浪费,但会增加NameNode元数据压力。
  • 大文件处理:对TB/PB级文件,调大块(如256MB或512MB)可减少分块数量,降低元数据开销

三、数据仓库

1.有多少表,表的数据量是多少


每日 zm_fund.fundperformance 135W条数据
假设7年 ZM_DW_ES.FUNDROLLSTATIS_JIXIAO 18亿数据


基金数量统计: 正常 公募+私募+尽调 = 3+3+1 = 7W +投后1W +模拟10W =总共18W  

                          实际 18W+模拟无效34W = 52W ,

fundid层100W
投后一万只基金
朝阳43 W  --> 朝阳库有误,现在只有两三万
聚源3W(2.9W)
尽调1W
脱敏模拟44W,有效10W
-----------------------------------------------
fundid层共100W
原始净值数据 2.5亿
插补净值日频 4亿
插补净值周频 1亿
----------------------------------------------
股:债:CTA:市场中性 12:4:2:1

2.模型设计怎么做的(数据分层怎么做的)

基于对外输出标尺库的数据,每类的评分数据 400w,

需要 有池子分类数据,基金净值数据,实体主要就是基金,维度有策略分类和赛道分类

初始ODS层进行数据同步fundinitcode

然后 dwd层进行 基金每日绩效统计 和 基金时序的绩效统计

然后DWS 基金在股票型池子的时序绩效评分 

然后 ADS 基金在股票型池子的时序的近系列的绩效评分(多行) 到 最终的大宽表(多列)

ADS:股票多头总分评分表,绩效质量评分表,资产配置能力评分表,场景应对能力评分表 alpha获取能力评分表

TiDB 查询,对外api服务,sqoop 增量同步。 

ZM_DW_RANK.DW_FUND_SCORE_DAY_NORM_LONG  基金在股票型池子的时序的绩效评分
ZM_DW_RANK.DW_FUND_SCORE_DAY_NORM_STATISPERIOD_LONG  基金在股票型池子的时序的近系列绩效评分   hera985   a.statistic_date,a.statistic_period,a.rankconfigid,a.frequency,a.fund_id,a.zm_fund_id
zm_dw_rank.t_fund_stock_performance hera1015 近系列绩效多行转多列 max(case  a.statistic_date when 1 then a,daywinrate else NULL END)  AS total_daywinrate ,--成立以来_对比基准胜率zm_dw_rank.t_fund_stock_performance tidb 分区同步set hive.exec.dynamic.partition=true;  
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.max.dynamic.partitions=2000;
set hive.exec.max.dynamic.partitions.pernode=400;
set hive.optimize.sort.dynamic.partition=true;
--SET hive.map.memory.mb=10240;  -- 设置Map任务的内存为2GB
--SET hive.reduce.memory.mb=20480; -- 设置Reduce任务的内存为2GB
--SET hive.exec.reducers.bytes.per.reducer=314572800 ;-- 300M 设置每个Reducer处理的数据量。虽然这是控制Reducer数量的参数,
--但是通过调整它,可以间接影响Map任务的数量,因为Map和Reduce任务的数量通常是成比例的。INSERT OVERWRITE TABLE zm_dw_rank.t_fund_stock_performance PARTITION(statistic_date)select fund_id,zm_fund_id,a.rankconfigid AS category_id,b.rankconfigname AS category_name,
max(case  a.statistic_period when 74 then  a.daywinrate   else NULL END)            AS y5_daywinrate ,--近5年_对比基准胜率
max(case  a.statistic_period when 2 then   a.daywinrate    else NULL END)           AS year_daywinrate ,--今年以来_对比基准胜率
max(case  a.statistic_period when 1 then   a.daywinrate    else NULL END)           AS total_daywinrate ,--成立以来_对比基准胜率1 is_valid ,--是否有效
current_date() create_time, --创建时间
a.statistic_dateFROMzm_dw_rank.dw_fund_score_day_norm_statisperiod_long aLEFT JOIN  zm_ods_flare_fund.ods_FundRankConfig b on a.rankconfigid = b.rankconfigid
WHERE statistic_period IN (1, 2, 3, 5, 6, 7, 8, 9, 74)and a.rankconfigid  in (1660,1661,1662,1663,1664,1673)
--  and a.zm_fund_id = 1322647
--  and a.statistic_date = '2024-12-22'GROUP BY A.fund_id,A.zm_fund_id,A.rankconfigid,b.rankconfigname,a.statistic_date ,1,current_date();

基于什么需求,做了什么业务,有哪些表/字段,ODS层数据从哪儿来,DWD层数据怎么处理,ADS层什么数据,支撑哪些查询 (建模方法论)

3.高频数据怎么做的

4.有哪些主题域 有哪些实体 有哪些维度

5.每日增量数据有多少

6.缓慢变化维的应用

7.拉链表的应用,拉链表的增量/全量统计

8.sqoop的同步效率

9.sqoop的数据倾斜

四、Python

1.pandas如何处理大规模数据

2.如何提高高并发

3.协程 进程 线程 

4.Fast Api 和 Flask

每日并发量4000

5.增量同步怎么做 全量同步怎么做 

6.Python 深拷贝 浅拷贝的使用场景

7.Python瓶颈如何定位

--------------------------------------------------------------pyinstrument
from pyinstrument import Profiler

    profiler = Profiler()
    profiler.start()
    ErrorCode,message = service.get_updated_calculation(oldfundsyscode=121739,fundsyscode=10000063521,fundid=10000072227,familytype=2)
    profiler.stop()
    print(profiler.output_text(unicode=True, color=True))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/73784.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LLM之RAG实战(五十二)| 如何使用混合搜索优化RAG 检索

在RAG项目中,大模型生成的参考内容(专业术语称为块)来自前一步的检索,检索的内容在很大程度上直接决定了生成的效果,因此检索对于RAG项目至关重要,最常用的检索方法是关键字搜索和语义搜索。本文将分别介绍…

[学成在线]07-视频转码

视频转码 视频上传成功后需要对视频进行转码处理。 首先我们要分清文件格式和编码格式: 文件格式:是指.mp4、.avi、.rmvb等这些不同扩展名的视频文件的文件格式 ,视频文件的内容主要包括视频和音频,其文件格式是按照一定的编码…

Leetcode算法方法总结

1. 双指针法解决链表/数组题目 只要数组有序,就要想到双指针做法。还有二分法 回文串一般也会用到双指针,回文串的长度由于可能是奇数也可能是偶数,所以在寻找时,既需要寻找奇数长度的回文串,也需要寻找偶数长度的回文…

一周掌握Flutter开发--9. 与原生交互(上)

文章目录 9. 与原生交互核心场景9.1 调用平台功能:MethodChannel9.1.1 Flutter 端实现9.1.2 Android 端实现9.1.3 iOS 端实现9.1.4 使用场景 9.2 使用社区插件9.2.1 常用插件9.2.2 插件的优势 总结 9. 与原生交互 Flutter 提供了强大的跨平台开发能力,但…

基于Flask的通用登录注册模块,并代理跳转到目标网址

实现了用户密码的加密,代理跳转到目标网址,不会暴露目标路径,未登录的情况下访问proxy则自动跳转到登录页,使用时需要修改配置项config,登录注册页面背景快速修改,可以实现登录注册模块的快速复用。 1.app…

Java课程设计(双人对战游戏)持续更新......

少废话,当然借助了ai,就这么个实力,后续会逐渐完善...... 考虑添加以下功能: 选将,选图,技能,天赋,道具,防反,反重力,物理反弹,击落…

Ai工作流工具有那些如Dify、coze扣子等以及他们是否开源

Dify (https://difycloud.com/) 核心定位:专业级 LLM 应用开发平台,支持复杂 AI 工作流构建与企业级管理。典型场景:企业智能客服、数据分析系统、复杂自动化流程构建等。适合需要深度定制、企业级管理和复杂 AI 逻辑…

Debezium系列之:使用Debezium和Apache Iceberg构建数据湖

Debezium系列之:使用Debezium和Apache Iceberg构建数据湖 Debezium Server Iceberg“Debezium Server Iceberg” 消费者设置数据复制Upsert 模式保留已删除的记录使用Upsert模式追加模式优化批处理大小在数据分析的世界中,数据湖是存储和管理大量数据以满足数据分析、报告或机…

docker run -p 5000:5000 my-flask-app

docker run -p 5000:5000 my-flask-app代码的意思是: 运行 my-flask-app 容器,并把 Flask 服务器的 5000 端口映射到本机的 5000 端口。 拆解解释 docker run -p 5000:5000 my-flask-app✅ docker run → 运行一个 Docker 容器 ✅ -p 5000:5000 → 端口…

高光谱工业相机+LED光源系统助力材料分类和异物检测、实现高速在线检测

检测光源包括可见光,如红光、蓝光和绿光以及其他波长的光,如紫外和红外波长,可以选择与检测对象物相应的波长。但由于能够照射的波长较窄,例如受到同色异物混入或多个素材的材质分类等,可能需要使用可照射多种波长的光…

Spring 拦截器(Interceptor)与过滤器(Filter)对比

Spring 拦截器(Interceptor)与过滤器(Filter)对比 核心对比表格 对比维度拦截器(Interceptor)过滤器(Filter)定义Spring MVC 提供的组件,集成于 Spring 处理器链。Servl…

VulnHub-FALL通关攻略

第一步:确定靶机IP为192.168.40.129 第二步:扫描后台及开放端口 #开放端口 22 --- ssh 25 --- SMTP简单邮件传输协议 80 --- HTTP万维网传输信息协议 110 --- POP3邮件协议3 139 --- NetBIOS服务 443 --- https服务 445 --- SMB协议 3306 --- Mysql 808…

Qt 线程和 QObjects

线程和 QObjects QThread 继承于 QObject。 它发出信号来指示线程开始或结束执行,并提供一些插槽。 更有趣的是,QObjects 可以在多个线程中使用,发出信号以调用其他线程中的插槽,并向 "生活 "在其他线程中的对象发布事件…

华为、浪潮、华三链路聚合概述

1、华为 链路聚合可以提高链路带宽和链路冗余性。有三种类型,分别是手工链路聚合,静态lacp链路聚合,动态lacp链路聚合。 手工链路模式:也称负载分担模式,需手动指定链路,各链路之间平均分担流量。静态LAC…

HarmonyOS NEXT 鸿蒙中关系型数据库@ohos.data.relationalStore API 9+

核心API ohos.data.relationalStore API 9 数据库 数据库是存储和管理数据的系统 数据库(Database)是一个以特定方式组织、存储和管理数据的集合,通常用于支持各种应用程序和系统的运行。它不仅是存放数据的仓库,还通过一定的…

步进电机 cia402协议 报文自己的理解 (笔记)

1. cai402 协议是什么 CiA 402 协议(CAN in Automation 402),它是工业自动化领域中的一种通信协议,主要用于运动控制(如伺服驱动器、步进电机等)( )所属标准 CiA 402 是 CANopen 应用…

鸿蒙摄像机,一场智能安防的“平权革命”

2025的春天,全国各行各业都感受到了普惠AI的魅力。大模型带来的技术平权,让每一个人都能轻松用上AI。 这时候,企业想知道,每时每刻离不开的摄像机,究竟什么时候才能迎来智能技术的平权与普惠。 博思数据研究中心的一份…

解决HuggingFaceEmbeddings模型加载报错:缺少sentence-transformers依赖包

遇到报错 报错信息: Error loading model: Could not import sentence_transformers python package. Please install it with pip install sentence-transformers. 装包信息: pip install modelscope langchain sentence_transformers langchain-huggingface on…

从泛读到精读:合合信息文档解析如何让大模型更懂复杂文档

从泛读到精读:合合信息文档解析如何让大模型更懂复杂文档 一、引言:破解文档“理解力”瓶颈二、核心功能:合合信息的“破局”亮点功能亮点1:复杂图表的高精度解析图表解析:为大模型装上精准“标尺”表格数据精准还原 功…

Python+requests实现接口自动化测试框架

为什么要做接口自动化框架 1、业务与配置的分离 2、数据与程序的分离;数据的变更不影响程序 3、有日志功能,实现无人值守 4、自动发送测试报告 5、不懂编程的测试人员也可以进行测试 正常接口测试的流程是什么? 确定接口测试使用的工具…