1.前言介绍
学习目标:了解什么是Speak、PySpark,了解为什么学习PySpark,了解课程是如何和大数据开发方向进行衔接


使用pyspark库所写出来的代码,既可以在电脑上简单运行,进行数据分析处理,又可以把代码无缝迁移到成百上千的服务器集群上去做分布式计算。
为什么要学习pyspark呢?



总结


2.基础准备
学习目标:掌握pyspark库的安装,掌握pyspark执行环境入口对象的构建,理解pyspark的编程模型。

建议使用国内代理镜像网站下载更快。


简化代码,本质上是同一个意思,链式结构,链式调用化简程序 基本原则,就是我不管调用什么方法,我的返回值都是同一个对象啊

代码展示:
"""
演示获取pyspark的执行环境入库对象:SparkContext
并通过SparkContext对象获取当前PySpark的版本
"""# 导包
from pyspark import SparkConf,SparkContext
# 创建SparkConf类对象 setMaster是描写运行模式 setAppName是设置当前Spark任务的名字
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
# 同一个意思,链式结构,链式调用化简程序
# 基本原则,就是我不管调用什么方法,我的返回值都是同一个对象啊
# 基于SparkConf类对象创建SparkContext对象
sc = SparkContext(conf=conf)
# 打印PySpark的运行版本
print(sc.version)
# 停止SparkContext对象的运行(停止PySpark程序)
sc.stop()
spark需要启动时间,所以代码的运行一小会,3.5.3就是当前spark的运行版本
这个sc非常非常重要哦,后续给大家讲解。

通过sc拿到数据输入,数据处理计算是通过RDD类对象的一系列成员方法来对数据进行计算,然后把结果对外进行输出

我们只需要记住后期写spark代码的三大步,把数据加载进来,对数据进行计算,把结果输出去
总结
