吉林省住房建设安厅网站宜春做网站 黑酷seo
吉林省住房建设安厅网站,宜春做网站 黑酷seo,做兼职的设计网站有哪些工作,企业网站的基本内容以及营销功能赛题介绍
在生鲜商超中#xff0c;一般蔬菜类商品的保鲜期都比较短#xff0c;且品相随销售时间的增加而变差#xff0c; 大部分品种如当日未售出#xff0c;隔日就无法再售。因此#xff0c; 商超通常会根据各商品的历史销售和需 求情况每天进行补货。 由于商超销售的蔬…赛题介绍
在生鲜商超中一般蔬菜类商品的保鲜期都比较短且品相随销售时间的增加而变差 大部分品种如当日未售出隔日就无法再售。因此 商超通常会根据各商品的历史销售和需 求情况每天进行补货。 由于商超销售的蔬菜品种众多、产地不尽相同而蔬菜的进货交易时间通常在凌晨 3:00- 4:00为此商家须在不确切知道具体单品和进货价格的情况下 做出当日各蔬菜品类的补货 决策。蔬菜的定价一般采用“成本加成定价”方法 商超对运损和品相变差的商品通常进行 打折销售。可靠的市场需求分析对补货决策和定价决策尤为重要。从需求侧来看蔬菜类 商品的销售量与时间往往存在一定的关联关系从供给侧来看蔬菜的供应品种在 4 月至 10 月较为丰富商超销售空间的限制使得合理的销售组合变得极为重要。 附件 1 给出了某商超经销的 6 个蔬菜品类的商品信息附件 2 和附件 3 分别给出了该 商超 2020 年 7 月 1 日至 2023 年 6 月 30 日各商品的销售流水明细与批发价格的相关数据 附件 4 给出了各商品近期的损耗率数据。请根据附件和实际情况建立数学模型解决以下问 题 问题 1 蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系请分析蔬菜各 品类及单品销售量的分布规律及相互关系。 问题 2 考虑商超以品类为单位做补货计划请分析各蔬菜品类的销售总量与成本加成 定价的关系并给出各蔬菜品类未来一周(2023 年 7 月 1-7 日)的日补货总量和定价策略 使得商超收益最大。 问题 3 因蔬菜类商品的销售空间有限商超希望进一步制定单品的补货计划 要求可 售单品总数控制在 27-33 个且各单品订购量满足最小陈列量 2.5 千克的要求。根据 2023 年 6 月 24-30 日的可售品种给出 7 月 1 日的单品补货量和定价策略在尽量满足市场对各 品类蔬菜商品需求的前提下使得商超收益最大。 问题 4 为了更好地制定蔬菜商品的补货和定价决策商超还需要采集哪些相关数据 这些数据对解决上述问题有何帮助 请给出你们的意见和理由。 附件 1 6 个蔬菜品类的商品信息 附件 2 销售流水明细数据 附件 3 蔬菜类商品的批发价格 附件 4 蔬菜类商品的近期损耗率
注 (1) 附件 1 中 部分单品名称包含的数字编号表示不同的供应来源。 (2) 附件4 中的损耗率反映了近期商品的损耗情况通过近期盘点周期的数据计算得到。
全部思路一共30至40页 代码下载地址
【多思路附源码】2023高教社杯 国赛数学建模C题思路 - 蔬菜类商品的自动定价与补货决策
数学建模论文万能模板适用于大学生各类建模类竞赛论文参考
需要可以点击 文末的卡片或者私信博主
论文模板
格式排版已经完善曾有小伙伴用此模板加上自己的建模功底获得省部级一等奖数学建模 模板包含数学建模相关论文必要的流程和解题步骤并且Word内有批注对每一个板块应该如何书写如何注意论文的一些格式以及参考案例等 以及按照标准论文排版OK了建议写作的时候直接按照这个模板进行内容的填充并且将相关术语进行整合 例如 简单的描述一下问题求解的大体思路首段简明扼要言简意赅。例如本文基于如何的问题背景进行如何的建模有怎样的经济实用效果得出如何的策略等。主要是简短背景加实际效应的结合
针对问题一此处描述对于问题一要求解进行大致的思路利用了什么样的方法有什么样的思路想法最终通过怎么样的模型算法进行问题的建模所得出的直接效果例如一些模型的准确度和参数可以加入说明。最终通过该求解方法能够达到如何的效果把问题求解实际化。这里该给出的加粗需要加粗。
针对问题二同样的效果描述和步骤这里唯一需要注意的就是如果问题是层层递进就需要说明基于问题一所求解的结果应用到问题二当中。
针对问题三具体的过程如上这里不光是对本问题的描述可以适当… 思路分析
蔬菜商品补货与定价策略分析
在现代的商业环境中正确地制定商品的补货和定价策略对于商家的成功至关重要。在本次分析中我们集中关注了商超蔬菜商品的补货和定价策略通过数据驱动的方法对其进行了深入的探讨。
蔬菜商品销售关联性分析
首先为了更好地了解不同蔬菜之间的销售关联性我们采用了Apriori关联分析算法。这是一种常用于购物篮分析的算法旨在找出经常一起出现的商品组合。我们发现了多种蔬菜的组合在销售中经常一起出现这为商家提供了有关商品组合促销的线索。
除了关联分析我们还进行了销售量的时间序列分析热力图分析和销售量的分布分析来更全面地了解蔬菜商品的销售规律。 数据预处理 检查并处理可能存在的缺失值。将销售数据按日期和商品进行汇总以得到每天每种蔬菜的销售量。 销售量分析 使用可视化方法展示不同蔬菜品类及单品的销售量分布。检查哪些蔬菜品类或单品的销售量最高和最低。 关联规则挖掘 使用Apriori算法对购买行为进行分析找出频繁购买的商品组合。根据得到的关联规则分析不同蔬菜品类或单品之间的关联关系。 结果可视化和分析
其他数据分析增加创新点
热力图展示不同蔬菜品类间的销售相关性。 饼状图展示各蔬菜品类的销售量占比。 柱状图对比各蔬菜品类的总销售量。 折线图展示某一特定蔬菜品类或单品随时间的销售趋势。
为每一步的结果提供相应的图表和文字描述。
这是一个数据分析的切入点你可以从多维度的探索新的发现数据的价值和规律并结合后面的题目对改题目的数据分析做一个限制有利于循序渐进
具体实现代码可以参考文档
基于销售历史数据的补货与定价策略
考虑到商超以品类为单位制定补货计划我们使用了线性回归模型来探索价格和销售量之间的关系。通过多元线性回归分析我们发现销售量与价格之间存在明显的负相关关系即价格上涨销售量下降。
此外我们还考虑了成本加成定价法模型其中价格是由单位成本和成本利润率决定的。利用最优化算法我们确定了使得商超收益最大化的成本利润率。
还可以使用时间序列的算法对其销量进行季节性的预测这里的预测算法也有一定的讲究具体可以参考我的思路里面的描述对每一个方法都做了详细的描述。 步骤1数据准备 计算每个蔬菜品类的总销售量。计算每个蔬菜品类的平均批发价格。 步骤2多元线性拟合 作为第一种方法使用多元线性回归模型拟合销售总量与批发价格和损耗率的关系。 步骤3其他方法 作为第二种方法我们可以使用决策树或随机森林模型来预测未来一周的销售量。 步骤4定价策略 基于预测的销售量和批发价格为未来一周提供定价策略。 时间序列分析 除了线性拟合我们还可以使用时间序列分析来预测未来的销售量。这种方法考虑了销售数据的时间顺序可能更准确地预测未来的销售。
模型的选择与取舍 模型复杂性 多元线性回归较为简单易于理解和解释。它假定因变量和自变量之间存在线性关系。ARIMA时间序列分析相对复杂专门用于时间序列数据。它可以捕捉数据中的季节性、趋势和周期性。 数据需求 多元线性回归需要足够多的观测值来确保模型的稳定性。对异常值和多重共线性较为敏感。ARIMA时间序列分析需要连续的时间序列数据并且数据量要足够多以捕捉潜在的趋势和季节性。 预测准确性 多元线性回归如果真实的关系非线性或者模型未能包括所有重要的自变量预测可能会偏离真实值。ARIMA时间序列分析如果模型参数选择得当且数据具有明显的趋势和季节性ARIMA通常可以提供较为准确的预测。 应用范围 多元线性回归适用于各种类型的数据只要因变量和自变量之间存在线性关系。ARIMA时间序列分析专门用于时间序列数据。 对于这个具体的问题
如果我们主要关心因变量销售量与自变量如批发价格之间的关系并希望得到一个简单、直观的模型那么多元线性回归可能是一个好选择。 如果我们主要关心未来的销售预测并且数据具有明显的季节性和趋势那么ARIMA可能更为合适。
具体实现代码可以参考文档
单品补货与定价策略
在考虑了品类为单位的补货和定价策略后我们进一步针对单品制定了补货和定价策略。考虑到销售空间的限制我们设置了一个约束条件即单品总数需控制在27-33个之间。通过最优化算法我们确定了每个单品的最优补货量和定价策略。 我们需要根据2023年6月24-30日的销售数据预测7月1日的销售量。 在选择哪些商品进行补货时我们要确保所选商品的总数在27-33个之间。 我们需要确保每个商品的补货量至少为2.5千克。 我们需要考虑如何定价以最大化利润。 这是一个相当复杂的优化问题。为简化问题我们可以首先考虑以下策略 使用过去一周的销售数据预测每种商品的需求。 选择预期需求最高的27-33种商品进行补货。 使用之前计算的最优利润率来定价。 成本加成定价模型和我们在第二问中建立的价格-销量的线性关系来优化成本利润率并且基于这一优化的成本利润率来确定补货量和定价策略。 具体步骤如下 使用之前建立的线性模型其中销量 Q 和价格 PP 的关系为Qa×Pb 根据成本加成定价模型价格可以表示为PC(1r) 其中 C 是单位成本r 是成本利润率。 代入价格-销量的线性模型我们得到Qa×C(1r)b 使用最优化算法优化 r即成本利润率来最大化利润。 利润 Π 可以表示为ΠQ×(P−C) 代入上述公式我们得到Π(a×C(1r)b)×(C(1r)−C) 我们的目标是最大化 ΠΠ。使用约束 0≤r≤0.20 即成本利润率在0到20%之间我们可以使用最优化算法求解最优的 r。 具体实现代码可以参考文档
建议采集的额外数据
为了更好地制定蔬菜商品的补货和定价策略我们建议商超采集更多相关数据如客户反馈、库存数据、促销活动数据、竞争对手定价策略、季节性和天气数据以及供应链数据。这些建议是基于这些数据能为商超提供更全面的市场趋势、客户需求和供应链状况的信息从而帮助其制定更有效的补货和定价策略。
结论
通过上述分析我们为商超提供了一个全面的蔬菜商品补货和定价策略框架。我们使用了多种数据分析和最优化方法如Apriori关联分析、线性回归、最优化算法等确保了策略的科学性和实用性。此外我们还为商超提供了关于如何进一步改进补货和定价策略的建议。
总体而言这次分析不仅为商超提供了具体的补货和定价策略还为其提供了一种系统性、数据驱动的决策制定方法。
为了更好地制定蔬菜商品的补货和定价决策除了销售历史数据和批发价格数据商超还可以考虑采集以下相关数据
客户反馈和满意度数据 意见了解客户对当前商品的反馈和满意度可以帮助商超调整商品的品质、种类和价格。 理由如果某些商品的反馈不佳可能需要考虑更换供应商或降低补货量如果某些商品的反馈很好可以增加补货量并优化定价策略。
库存数据 意见知道当前的库存水平可以帮助商超更精确地决定补货量。 理由避免过度补货或缺货确保库存与需求相匹配。
促销和营销活动数据 意见了解促销和营销活动的效果可以帮助商超优化未来的促销策略。 理由确定哪些促销活动最有效以及如何定价来吸引更多的客户。
竞争对手的定价和促销策略数据 意见了解市场上的竞争对手如何定价和促销可以帮助商超制定更有竞争力的策略。 理由确保商超的价格和促销活动与市场趋势和竞争对手的策略相匹配。
季节性和天气数据 意见某些蔬菜的需求可能受到季节和天气的影响。 理由例如在炎热的夏天客户可能更倾向于购买清凉的蔬菜如黄瓜和西红柿而在冬天他们可能更倾向于购买适合炖汤的蔬菜如白菜和胡萝卜。
供应链数据 意见了解供应链的效率、可靠性和成本可以帮助商超选择更好的供应商和优化补货策略。 理由如果某个供应商经常延迟交货或提供的商品品质不佳商超可能需要考虑更换供应商。
总之除了传统的销售和价格数据商超还可以考虑采集多种相关数据以更全面地理解市场趋势、客户需求和供应链状况从而制定更有效的补货和定价策略。
每文一语 思路参考只供学习
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/88178.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!