数据结构与算法:图论——最短路径

最短路径

先给出一些leetcode算法题,以后遇见了相关题目再往上增加

最短路径的4个常用算法是Floyd、Bellman-Ford、SPFA、Dijkstra。不同应用场景下,应有选择地使用它们:

  • 图的规模小,用Floyd。若边的权值有负数,需要判断负圈。
  • 图的规模大,且边的权值非负,用Dijkstra
  • 图的规模大,且边的权值有负数,用SPFA,需要判断负圈。
结点N、边M边权值选用算法数据结构
n<200允许有负Floyd邻接矩阵
n×m<107允许有负Bellman-Ford邻接表
更大有负SPFA邻接表、前向星
更大无负数Dijkstra邻接表、前向星

2.1、Floyd算法

  • Floyed算法:主要是构建 二维矩阵:dp[i][j] 表示从节点 i 到节点 j 最短距离
  • 初始化矩阵时:有方向性并且同一节点的最短距离为0
//  floyed 算法vector<vector<int>> dp(n + 1, vector<int>(n + 1, INT_MAX / 2));for (auto a : times) {dp[a[0]][a[1]] = a[2];}for (int i = 0; i <= n; i++) {dp[i][i] = 0;}for (int k = 0; k <= n; k++) for (int i = 0; i <= n; i++) for (int j = 0; j <= n; j++) if (dp[i][j] > dp[i][k] + dp[k][j]) dp[i][j] = dp[i][k] + dp[k][j];

1、743. 网络延迟时间

n 个网络节点,标记为 1n

给你一个列表 times,表示信号经过 有向 边的传递时间。 times[i] = (ui, vi, wi),其中 ui 是源节点,vi 是目标节点, wi 是一个信号从源节点传递到目标节点的时间。

现在,从某个节点 K 发出一个信号。需要多久才能使所有节点都收到信号?如果不能使所有节点收到信号,返回 -1

示例 1:

img

输入:times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
输出:2

示例 2:

输入:times = [[1,2,1]], n = 2, k = 1
输出:1

示例 3:

输入:times = [[1,2,1]], n = 2, k = 2
输出:-1

提示:

  • 1 <= k <= n <= 100
  • 1 <= times.length <= 6000
  • times[i].length == 3
  • 1 <= ui, vi <= n
  • ui != vi
  • 0 <= wi <= 100
  • 所有 (ui, vi) 对都 互不相同(即,不含重复边)
//  floyed 算法
class Solution {
public:int networkDelayTime(vector<vector<int>>& times, int n, int k) {vector<vector<int>> dp(n + 1, vector<int>(n + 1, INT_MAX / 2));for (auto a : times) {dp[a[0]][a[1]] = a[2];}for (int i = 0; i <= n; i++) {dp[i][i] = 0;}for (int k = 0; k <= n; k++) {for (int i = 0; i <= n; i++) {for (int j = 0; j <= n; j++) {if (dp[i][j] > dp[i][k] + dp[k][j]) {dp[i][j] = dp[i][k] + dp[k][j];}}}}int res = 0;for (int i = 1; i <= n; i++) {if (dp[k][i] == INT_MAX / 2)return -1;res = max(res, dp[k][i]);}return res;}
};

2、1334. 阈值距离内邻居最少的城市

  • 这个用floyed直接算即可。无向图构造矩阵时重复操作即可

n 个城市,按从 0n-1 编号。给你一个边数组 edges,其中 edges[i] = [fromi, toi, weighti] 代表 fromitoi 两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold

返回能通过某些路径到达其他城市数目最少、且路径距离 最大distanceThreshold 的城市。如果有多个这样的城市,则返回编号最大的城市。

注意,连接城市 ij 的路径的距离等于沿该路径的所有边的权重之和。

示例 1:

image-20240508214812051

输入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
输出:3
解释:城市分布图如上。
每个城市阈值距离 distanceThreshold = 4 内的邻居城市分别是:
城市 0 -> [城市 1, 城市 2] 
城市 1 -> [城市 0, 城市 2, 城市 3] 
城市 2 -> [城市 0, 城市 1, 城市 3] 
城市 3 -> [城市 1, 城市 2] 
城市 0 和 3 在阈值距离 4 以内都有 2 个邻居城市,但是我们必须返回城市 3,因为它的编号最大。

示例 2:

image-20240508214822340

输入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
输出:0
解释:城市分布图如上。 
每个城市阈值距离 distanceThreshold = 2 内的邻居城市分别是:
城市 0 -> [城市 1] 
城市 1 -> [城市 0, 城市 4] 
城市 2 -> [城市 3, 城市 4] 
城市 3 -> [城市 2, 城市 4]
城市 4 -> [城市 1, 城市 2, 城市 3] 
城市 0 在阈值距离 2 以内只有 1 个邻居城市。
class Solution {
public:int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {vector<vector<int>> dp(n, vector<int>(n, INT_MAX / 2));for (auto a : edges) {dp[a[0]][a[1]] = a[2];dp[a[1]][a[0]] = a[2];}for (int k = 0; k < n; k++)for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)if (dp[i][j] > dp[i][k] + dp[k][j])dp[i][j] = dp[i][k] + dp[k][j];// floyed计算完毕,取次数判断即可vector<int> cnt(n, 0);for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {if (i == j)continue;if (dp[i][j] <= distanceThreshold)cnt[i]++;}}int min = *min_element(cnt.begin(), cnt.end());int res;for (int i = n - 1; i >= 0; i--) {if (min == cnt[i]) {res = i;break;}}return res;}
};

2.2、BellmanFord算法

  • Bellman-ford算法的思路也很简单,直接就是两层循环,内层循环所有边,外层循环就是循环所有边的次数。
  • 时间复杂度是O(n*m)显然不如dijkstra快
  • 优点:它可以处理负权边和负权环的情况。并且可以处理限制次数的问题
//  dp[j] 表示节点k到j的最短路径:并且注意每次更新最短路径,是在上一次的dp上更新:
//  a[0] 表示起始节点;a[1] 表示最终节点;a[2]表示a[0]到a[1] 的距离大小。
//  a[0]->a[1]距离为a[2]:所以每次更新的都是 dp[a[1]] ,但是需要上一次的整体的predp,来取a[0]节点的最短距离// 最标准的形式有前一个的最小距离的predp
int networkDelayTime(vector<vector<int>>& times, int n, int k) {vector<int> dp(n+1,INT_MAX/2);dp[k] = 0;bool flag;while(1){flag = true;vector<int> predp(dp);for(auto a:times){if(dp[a[1]] > predp[a[0]]+a[2]){flag = false;dp[a[1]] = predp[a[0]]+a[2];}}if(flag)	break;}int res = *max_element(dp.begin()+1,dp.end());return res==INT_MAX/2?-1:res;}//	 然而没有predp也可以,省下来空间
int networkDelayTime(vector<vector<int>>& times, int n, int k) {vector<int> dp(n+1,INT_MAX/2);dp[k ] = 0;bool flag;while(1){flag = true;for(auto a:times){if(dp[a[1]] > dp[a[0]]+a[2]){flag = false;dp[a[1]] = dp[a[0]]+a[2];}}if(flag) break;}int res = *max_element(dp.begin()+1,dp.end());return res==INT_MAX/2?-1:res;
}

1、743. 网络延迟时间

示例 1:

img

输入:times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
输出:2
// BellmanFord算法  算法复杂度为O(m*n)
class Solution {
public:int networkDelayTime(vector<vector<int>>& times, int n, int k) {vector<int> dp(n+1,INT_MAX/2);dp[k ] = 0;bool flag;while(1){flag = true;// vector<int> predp(dp);for(auto a:times){if(dp[a[1]] > dp[a[0]]+a[2]){flag = false;dp[a[1]] = dp[a[0]]+a[2];}}if(flag) break;}int res = *max_element(dp.begin()+1,dp.end());return res==INT_MAX/2?-1:res;}
};

2、787. K 站中转内最便宜的航班

  • 经典使用BellmanFord算法题目最多经过 k 站中转的路线

n 个城市通过一些航班连接。给你一个数组 flights ,其中 flights[i] = [fromi, toi, pricei] ,表示该航班都从城市 fromi 开始,以价格 pricei 抵达 toi

现在给定所有的城市和航班,以及出发城市 src 和目的地 dst,你的任务是找到出一条最多经过 k 站中转的路线,使得从 srcdst价格最便宜 ,并返回该价格。 如果不存在这样的路线,则输出 -1

示例 1:

img

输入: 
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 1
输出: 200
解释: 
城市航班图如下
从城市 0 到城市 2 在 1 站中转以内的最便宜价格是 200,如图中红色所示。

示例 2:

img

输入: 
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 0
输出: 500
解释: 
城市航班图如下
从城市 0 到城市 2 在 0 站中转以内的最便宜价格是 500,图中蓝色所示。

提示:

  • 1 <= n <= 100
  • 0 <= flights.length <= (n * (n - 1) / 2)
  • flights[i].length == 3
  • 0 <= fromi, toi < n
  • fromi != toi
  • 1 <= pricei <= 104
  • 航班没有重复,且不存在自环
  • 0 <= src, dst, k < n
  • src != dst
/*BellmanFord算法::外层的路径就是中转的次数,但是注意K++;是中转1此,那么可以使用两条路径使用BellmanFord算法最标准形式:使用predp形式
*/
class Solution {
public:int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int k) {vector<int> dp(n, 1e5+1);dp[src] = 0;k++;while (k--) {vector<int> predp(dp);// 这里最好加&可以大大提高速度for (auto &a : flights) {if(dp[a[1]]>predp[a[0]]+a[2])dp[a[1]] =predp[a[0]]+a[2];}}return dp[dst] ==  1e5+1? -1 : dp[dst];}
};
/*不使用BellmanFord算法最标准形式:无predp形式无法准确得到中转次数:结果不对,但是不考虑次数的话,也能得到最短距离
*/// 结果不对
class Solution {
public:int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst,int k) {vector<int> dp(n, 1e5+1);dp[src] = 0;k++;while (k--) {// vector<int> predp(dp);for (auto &a : flights) {if(dp[a[1]]>dp[a[0]]+a[2])dp[a[1]] =dp[a[0]]+a[2];}}return dp[dst] ==  1e5+1? -1 : dp[dst];}
};

3、1514. 概率最大的路径

  • 本题重点是无向图:两边都要操作一次,重复操作即可
  • 无向图:说白了就是条件是有向图的两倍,给反转前后节点即可

给你一个由 n 个节点(下标从 0 开始)组成的无向加权图,该图由一个描述边的列表组成,其中 edges[i] = [a, b] 表示连接节点 a 和 b 的一条无向边,且该边遍历成功的概率为 succProb[i]

指定两个节点分别作为起点 start 和终点 end ,请你找出从起点到终点成功概率最大的路径,并返回其成功概率。

如果不存在从 startend 的路径,请 返回 0 。只要答案与标准答案的误差不超过 1e-5 ,就会被视作正确答案。

示例 1:

img

输入:n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2
输出:0.25000
解释:从起点到终点有两条路径,其中一条的成功概率为 0.2 ,而另一条为 0.5 * 0.5 = 0.25

示例 2:

img

输入:n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2
输出:0.30000

示例 3:

img

输入:n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2
输出:0.00000
解释:节点 0 和 节点 2 之间不存在路径

提示:

  • 2 <= n <= 10^4
  • 0 <= start, end < n
  • start != end
  • 0 <= a, b < n
  • a != b
  • 0 <= succProb.length == edges.length <= 2*10^4
  • 0 <= succProb[i] <= 1
  • 每两个节点之间最多有一条边
class Solution {
public:double maxProbability(int n, vector<vector<int>>& edges,vector<double>& succProb, int start_node,int end_node) {vector<double> dp(n, 0);dp[start_node] = 1;while (1) {bool flag = true;for (int i = 0; i < succProb.size(); i++) {// 双向图:反转前后再操作一次即可if (dp[edges[i][1]] < dp[edges[i][0]] * succProb[i]) {flag = false;dp[edges[i][1]] = dp[edges[i][0]] * succProb[i];}if (dp[edges[i][0]] < dp[edges[i][1]] * succProb[i]) {flag = false;dp[edges[i][0]] = dp[edges[i][1]] * succProb[i];}}if (flag)   break;}return dp[end_node];}
};

3、1334. 阈值距离内邻居最少的城市

  • 这个用floyed直接算即可。使用bellmanFord可以做

n 个城市,按从 0n-1 编号。给你一个边数组 edges,其中 edges[i] = [fromi, toi, weighti] 代表 fromitoi 两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold

返回能通过某些路径到达其他城市数目最少、且路径距离 最大distanceThreshold 的城市。如果有多个这样的城市,则返回编号最大的城市。

注意,连接城市 ij 的路径的距离等于沿该路径的所有边的权重之和。

示例 1:

image-20250502234625382

输入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
输出:3
解释:城市分布图如上。
每个城市阈值距离 distanceThreshold = 4 内的邻居城市分别是:
城市 0 -> [城市 1, 城市 2] 
城市 1 -> [城市 0, 城市 2, 城市 3] 
城市 2 -> [城市 0, 城市 1, 城市 3] 
城市 3 -> [城市 1, 城市 2] 
城市 0 和 3 在阈值距离 4 以内都有 2 个邻居城市,但是我们必须返回城市 3,因为它的编号最大。

示例 2:

image-20250502234614892

输入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
输出:0
解释:城市分布图如上。 
每个城市阈值距离 distanceThreshold = 2 内的邻居城市分别是:
城市 0 -> [城市 1] 
城市 1 -> [城市 0, 城市 4] 
城市 2 -> [城市 3, 城市 4] 
城市 3 -> [城市 2, 城市 4]
城市 4 -> [城市 1, 城市 2, 城市 3] 
城市 0 在阈值距离 2 以内只有 1 个邻居城市。
class Solution {
public:int targetnum(int n, vector<vector<int>>& edges, int distanceThreshold,int k) {vector<int> dp(n, INT_MAX / 2);dp[k] = 0;while (1) {bool flag = true;vector<int> predp(dp);for (auto& a : edges) {if (dp[a[1]] > predp[a[0]] + a[2]) {flag = false;dp[a[1]] = predp[a[0]] + a[2];}if (dp[a[0]] > predp[a[1]] + a[2]) {flag = false;dp[a[0]] = predp[a[1]] + a[2];}}if (flag)break;}int res = 0;/*这里注意:这个是排除本身for (int i = 0; i < n; i++) {if (i == k)continue;if (dp[i] <= distanceThreshold) {res++;}}若改成:只要碰到i!=k,则跳出这个for循环,后面都不执行了for (int i = 0; i < n && i!=k; i++) {if (dp[i] <= distanceThreshold) {res++;}}*/for (int i = 0; i < n; i++) {if (i == k)continue;if (dp[i] <= distanceThreshold) {res++;}}return res;}// 找到最右边的最小值及坐标。int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {int min_num = 200;int res = 0;for(int i = 0;i<n;i++){int mid = BellmabFord( n, edges, i, distanceThreshold);if(mid<=min_num){min_num = mid;res = i; }}return res;}// 直观但臃肿。int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {int minn = INT_MAX / 2;vector<int> res;for (int i = 0; i < n; i++) {res.push_back(targetnum(n, edges, distanceThreshold, i));}int sul = 0;int minnub = *min_element(res.begin(), res.end());for (int i = n - 1; i >= 0; i--) {if (res[i] == minnub) {sul = i;break;}}return sul;}
};

2.3、dijkstra算法

  • 基础型:图的规模大,且边的权值非负,用Dijkstra时间复杂度O(N*N)。可以看出时间复杂度 只和 n (节点数量)有关系。
// dijkstra算法基础版/*基础版:适用于题目中给出距离矩阵,给出矩阵
*/
vector<int> dijkstra(vector<vector<int>>& value, int start) {//需要一个二维矩阵从0到n,0基本上没有用,无关的都是INT_MAX / 2//对角线为0//返回了一个value[i][j]表示从i到j的最短路径,但是i,j不为0int len = value.size();      // len = n + 1;int n = len - 1;vector<int> res(len, INT_MAX);res[start] = 0;vector<bool> visit(len, false);for (int i = 1; i <= n; i++) {// 找到最小蓝的位置int minbule = 0;for (int j = 1; j <= n; j++) {if (!visit[j] && res[minbule] > res[j]) {minbule = j;}}if(visited[blue]) continue;// 把最小蓝变成白色visit[minbule] = true;// 更新所有最短距离for (int j = 1; j <= n; j++) {res[j] = min(res[j], res[minbule] + value[minbule][j]);}}return res;
}
  • 堆优化型:使用边数,边数少的,堆优化比较好。时间复杂度:O(E * (N + logE)) E为边的数量,N为节点数量。
  • 适用条件:但 n 很大,边 的数量 很小的时候(稀疏图),是不是可以换成从边的角度来求最短路呢?
int dijkstra_networkDelayTime2(vector<vector<int>>& times, int n, int k) {unordered_map<int, vector<pair<int, int > > > mp;for (auto a : times) {mp[a[0]].push_back({a[1], a[2]});}// 不一定要用map,使用vector效果一样:只不过是保存a[0]点指向的节点和距离vector<vector<pair<int, int>>> g(n);for (auto &t : times) {int x = t[0] - 1, y = t[1] - 1;g[x].emplace_back(y, t[2]);}作者:力扣官方题解
链接:https://leetcode.cn/problems/network-delay-time/solutions/909575/wang-luo-yan-chi-shi-jian-by-leetcode-so-6phc/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。vector<int> dismin(n + 1, INT_MAX / 2);vector<bool> visited(n + 1, false);dismin[k] = 0;// 优先队列<蓝点的最短距离,蓝点坐标>小顶堆priority_queue< pair<int, int>, vector<pair<int, int> >,  greater<>  > que;que.push({0, k});while (!que.empty()) {int minblue = que.top().second;que.pop();// 变成白点if (visited[minblue]) continue;visited[minblue] = true;// 增加这个白点会有什么影响对于 dismin// 遍历所有与新白点连接的蓝点for (pair<int, int > a : mp[minblue]) {if (!visited[a.first] && dismin[a.first] > a.second + dismin[minblue] ) {dismin[a.first] = a.second + dismin[minblue];que.push({dismin[a.first], a.first});}}}int res = *max_element(dismin.begin() + 1, dismin.end());return res == INT_MAX / 2 ? -1 : res;
}
  • 时间复杂度:O(E * (N + logE)) E为边的数量,N为节点数量

  • 空间复杂度:O(log(N^2))

  • while (!pq.empty()) 时间复杂度为 E ,while 里面 每次取元素 时间复杂度 为 logE,和 一个for循环 时间复杂度 为 N 。所以整体是 E * (N + logE)

  • sort排序与大顶堆

    • 优先队列
    • less<>表示从上到下是递减的
    • greater<>表示从上到下是递增的
    #include <bits/stdc.h>
    using namespace std;// priority_queue
    // less<>表示从上到下是递减的
    // greater<>表示从上到下是递增的
    // 默认  不加默认less<>   大顶堆就是less<> 
    // 如果想要头上最小需要加上greater<>
    void prio_int() {vector<int> strs = {5,8,2,6,1,8,2};priority_queue<int, vector<int>, less<>> que(strs.begin(),strs.end());while(que.empty()==0){cout<<que.top()<<endl;que.pop();}return;
    }// 优先队列的自定义
    // 优先队列与传统sort的相反
    void prio_string() {vector<string> strs = {"xhh", "mmcy", "mi", "xhz", "abcdef"};struct cmp{bool operator()(string a,string b){return a.size()<b.size()||(a.size()==b.size() && a>b);}};priority_queue<string, vector<string>, cmp> que(strs.begin(),strs.end());while(que.empty()==0){cout<<que.top()<<endl;que.pop();}return;
    }// map自动排序,unordered_map 不排序,想排序直接用
    // vector<pair<int,string>>来重新装一下,再排序
    void sort_map_int() {map<int, string> mp = {{1, "ab"}, {8, "zx"}, {5, "ac"}, {4, "ae"}};for (auto a : mp) {cout << a.first << "->" << a.second << endl;}return ;
    }// sort pair使用 a.first   a.second
    // 类型使用auto肯定是对的,但是可能没有提示first、second
    void sort_pair_int() {vector<pair<int, string>> test_vector = {{5, "abc"}, {1, "ac"}, {1, "ad"}, {2, "ac"}};sort(test_vector.begin(), test_vector.end(), [](auto a, auto b) {return (a.first > b.first || (a.first == b.first && a.second > b.second));});for (auto a : test_vector ) {cout << a.first << "->" << a.second << endl;}return ;
    }void sort_vector_int() {vector<int> test_vector = {5, 4, 9, 7};sort(test_vector.begin(), test_vector.end(), [](auto a, auto b) {return a > b;});for (auto a : test_vector ) {cout << a << " ";}cout << endl;return ;
    }void sort_vector_vector_int() {vector<vector<int>> test_vector = {{1, 2}, {9, 8}, {1, 3}, {8, 2}, {6, 5}};sort(test_vector.begin(), test_vector.end(), [](auto a, auto b) {return (a[0] < b[0] || (a[0] == b[0] && a[1] < b[1]));});for (auto a : test_vector ) {for (auto b : a) {cout << b << " ";}cout << endl;}return ;
    }int main() {sort_vector_int();cout << "****************" << endl;sort_vector_vector_int();cout << "****************" << endl;sort_pair_int();cout << "****************" << endl;sort_map_int();cout << "****************" << endl;prio_string();cout << "****************" << endl;prio_int();
    }
    

1、743. 网络延迟时间

n 个网络节点,标记为 1n

给你一个列表 times,表示信号经过 有向 边的传递时间。 times[i] = (ui, vi, wi),其中 ui 是源节点,vi 是目标节点, wi 是一个信号从源节点传递到目标节点的时间。

现在,从某个节点 K 发出一个信号。需要多久才能使所有节点都收到信号?如果不能使所有节点收到信号,返回 -1

示例 1:

image-20250502234548722

输入:times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
输出:2

示例 2:

输入:times = [[1,2,1]], n = 2, k = 1
输出:1

示例 3:

输入:times = [[1,2,1]], n = 2, k = 2
输出:-1

提示:

  • 1 <= k <= n <= 100
  • 1 <= times.length <= 6000
  • times[i].length == 3
  • 1 <= ui, vi <= n
  • ui != vi
  • 0 <= wi <= 100
  • 所有 (ui, vi) 对都 互不相同(即,不含重复边)
/*普通版本
*/class Solution {
public:int networkDelayTime(vector<vector<int>>& times, int n, int k) {vector<int> dp(n + 1, INT_MAX / 2);dp[k] = 0;vector<vector<int>> dis(n + 1, vector<int>(n + 1, INT_MAX / 2));for (auto& a : times) {dis[a[0]][a[1]] = a[2];}vector<int> visited(n + 1, false);//for(int i = 0;i<=n;i++){while(1) {int blue = 0;for (int i = 0; i <= n; i++) {if (!visited[i] && dp[blue] > dp[i]) {blue = i;}}// 再次遇到说明最小值就是0了,结束了if(visited[blue]) break;visited[blue] = true;for (int i = 0; i <= n; i++) {if (dp[i] > dp[blue] + dis[blue][i]) {dp[i] = dp[blue] + dis[blue][i];}}}int res = *max_element(dp.begin() + 1, dp.end());return res == INT_MAX / 2 ? -1 : res;}
};// 堆优化版本
class Solution {
public:int networkDelayTime(vector<vector<int>>& times, int n, int k) {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> que;//	que.push({k,0});que.push({0, k});vector<bool> visited(n + 1, false);vector<int> dp(n + 1, INT_MAX / 2);dp[k] = 0;while (!que.empty()) {auto blue = que.top();que.pop();// 这里不用想那么多:看见置true直接在前面加判断if( visited[blue.second]) continue;visited[blue.second] = true;for (auto& a : times) {// 这里直接取头节点不是这个blue的直接跳过,已经为白的直接跳过// 目的是为了取最小的蓝if (a[0] != blue.second || visited[a[1]] )continue;if (dp[a[1]] > dp[blue.second] + a[2]) {dp[a[1]] = dp[blue.second] + a[2];que.push({dp[a[1]], a[1]});}}}int res = *max_element(dp.begin() + 1, dp.end());return res == INT_MAX / 2 ? -1 : res;}
};

2、1334. 阈值距离内邻居最少的城市

  • 直接使用堆优化:注意双向图即可

n 个城市,按从 0n-1 编号。给你一个边数组 edges,其中 edges[i] = [fromi, toi, weighti] 代表 fromitoi 两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold

返回能通过某些路径到达其他城市数目最少、且路径距离 最大distanceThreshold 的城市。如果有多个这样的城市,则返回编号最大的城市。

注意,连接城市 ij 的路径的距离等于沿该路径的所有边的权重之和。

示例 1:

image-20250502234526613

输入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
输出:3
解释:城市分布图如上。
每个城市阈值距离 distanceThreshold = 4 内的邻居城市分别是:
城市 0 -> [城市 1, 城市 2] 
城市 1 -> [城市 0, 城市 2, 城市 3] 
城市 2 -> [城市 0, 城市 1, 城市 3] 
城市 3 -> [城市 1, 城市 2] 
城市 0 和 3 在阈值距离 4 以内都有 2 个邻居城市,但是我们必须返回城市 3,因为它的编号最大。

示例 2:

image-20250502234509711

输入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
输出:0
解释:城市分布图如上。 
每个城市阈值距离 distanceThreshold = 2 内的邻居城市分别是:
城市 0 -> [城市 1] 
城市 1 -> [城市 0, 城市 4] 
城市 2 -> [城市 3, 城市 4] 
城市 3 -> [城市 2, 城市 4]
城市 4 -> [城市 1, 城市 2, 城市 3] 
城市 0 在阈值距离 2 以内只有 1 个邻居城市。
/*无向图的堆优化djikstra算法:
*/
class Solution {
public:int target(int n, vector<vector<int>>& edges, int distanceThreshold,int k) {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> que;que.push({0, k});vector<int> dis(n, INT_MAX / 2);dis[k] = 0;vector<bool> visited(n, false);while (!que.empty()) {int blue = que.top().second;que.pop();if (visited[blue])continue;visited[blue] = true;for (auto& a : edges) {if (a[0]==blue && dis[a[1]] > dis[a[0]] + a[2]) {dis[a[1]] = dis[a[0]] + a[2];que.push({dis[a[1]], a[1]});}if (a[1]==blue && dis[a[0]] > dis[a[1]] + a[2]) {dis[a[0]] = dis[a[1]] + a[2];que.push({dis[a[0]], a[0]});}}}int res = 0;for (auto& a : dis) {if (a <= distanceThreshold)res++;}return res;}int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {int res = INT_MAX / 2;int resdex = 0;for (int i = 0; i < n; i++) {int mid = target(n, edges, distanceThreshold, i);if (mid <= res) {res = mid;resdex = i;}}return  resdex;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/79104.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[android]MT6835 Android 关闭selinux方法

Selinux SELinux is an optional feature of the Linux kernel that provides support to enforce access control security policies to enforce MAC. It is based on the LSM framework. Working with SELinux on Android – LineageOS Android 关闭selinux MT6835 Android…

【Linux网络编程】http协议的状态码,常见请求方法以及cookie-session

本文专栏&#xff1a;Linux网络编程 目录 一&#xff0c;状态码 重定向状态码 1&#xff0c;永久重定向&#xff08;301 Moved Permanently&#xff09; 2&#xff0c;临时重定向&#xff08;302 Found&#xff09; 二&#xff0c;常见请求方法 1&#xff0c;HTTP常见Hea…

当神经网络突破摩尔定律:探索大模型时代的算力新纪元

当摩尔定律熄灭后&#xff1a;AI算力革命如何重塑技术文明的底层逻辑 一、摩尔定律的黄昏&#xff1a;物理极限与经济理性的双重困境 当英特尔在1965年提出摩尔定律时&#xff0c;没有人预料到这个每18-24个月将芯片晶体管数量翻倍的预言会成为现代计算文明的基石。半个世纪以…

位运算题目:寻找重复数

文章目录 题目标题和出处难度题目描述要求示例数据范围进阶 前言解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 解法三思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;寻找重复数 出处&#xff1a;287. 寻找重复数 难度 6 级 题目描述 要…

Elasticsearch:没有 “AG” 的 RAG?

作者&#xff1a;来自 Elastic Gustavo Llermaly 了解如何利用语义搜索和 ELSER 构建一个强大且视觉上吸引人的问答体验&#xff0c;而无需使用 LLMs。 想要获得 Elastic 认证&#xff1f;查看下一期 Elasticsearch Engineer 培训的时间&#xff01; Elasticsearch 拥有众多新…

linux下安装ollama网不好怎么办?

文章目录 前言kkgithub下载脚本,而不是直接运行修改脚本修改权限还是不行?前言 今天想在linux上面更新一下ollama,于是去到官网: https://ollama.com/download/linux linux下安装ollama还是挺简单的: curl -fsSL https://ollama.com/install.sh | sh我也是特别嗨皮地就…

相机-IMU联合标定:相机-IMU外参标定

文章目录 📚简介🚀标定工具kalibr🚀标定数据录制🚀相机-IMU外参标定📚简介 在 VINS(视觉惯性导航系统) 中,相机-IMU外参标定 是确保多传感器数据时空统一的核心环节,其作用可概括为以下关键点: 坐标系对齐(空间同步),外参误差会导致视觉特征点投影与IMU预积…

基于 Java 的实现前端组装查询语句,后端直接执行查询方案,涵盖前端和后端的设计思路

1. 前端设计 前端负责根据用户输入或交互条件,动态生成查询参数,并通过 HTTP 请求发送到后端。 前端逻辑: 提供用户界面(如表单、筛选器等),让用户选择查询条件。将用户选择的条件组装成 JSON 格式的查询参数。发送 HTTP 请求(如 POST 或 GET)到后端。示例: 假设用…

[STM32] 4-2 USART与串口通信(2)

文章目录 前言4-2 USART与串口通信(2)数据发送过程双缓冲与连续发送数据发送过程中的问题 数据接收过程TXE标志位&#xff08;发送数据寄存器空&#xff09;TC标志位&#xff08;发送完成标志位&#xff09;单个数据的发送数据的连续发送 接收过程中遇到的问题问题描述&#xf…

Qt多线程TCP服务器实现指南

在Qt中实现多线程TCP服务器可以通过为每个客户端连接分配独立的线程来处理&#xff0c;以提高并发性能。以下是一个分步实现的示例&#xff1a; 1. 自定义工作线程类&#xff08;处理客户端通信&#xff09; // workerthread.h #include <QObject> #include <QTcpSo…

详细介绍Python-pandas-DataFrame全部 *功能* 函数

Python-pandas-DataFrame全部 功能 函数 提示&#xff1a;帮帮志会陆续更新非常多的IT技术知识&#xff0c;希望分享的内容对您有用。本章分享的是pandas的使用语法。前后每一小节的内容是存在的有&#xff1a;学习and理解的关联性。【帮帮志系列文章】&#xff1a;每个知识点…

香港科技大学广州|可持续能源与环境学域博士招生宣讲会—四川大学专场

香港科技大学广州&#xff5c;可持续能源与环境学域博士招生宣讲会—四川大学专场 时间&#xff1a;2025年5月8日&#xff08;星期四&#xff09;16:30开始 地点&#xff1a;四川大学基础教学楼A座504 宣讲嘉宾&#xff1a;肖殿勋 助理教授 一经录取&#xff0c;享全额奖学金…

装饰器设计模式(Decorator Pattern)详解

装饰器设计模式(Decorator Pattern)详解 装饰器模式是一种结构型设计模式,它允许动态地向对象添加额外行为,而无需修改其原始类。这种模式通过包装对象的方式提供灵活的扩展功能替代继承。 1. 核心概念 (1)模式定义 装饰器模式:动态地给一个对象添加一些额外的职责,就…

【SpringMVC】详解参数传递与实战指南

目录 1.前言 2.正文 2.1基础参数传递 2.1.1单参数 2.1.2多参数 2.2对象参数绑定 2.2.1自动封装对象 2.2.2参数别名处理 2.3集合类型处理 2.3.1数组接收 2.3.2List集合接收 2.4JSON参数处理 2.4.1介绍JSON 2.4.2传递JSON参数 2.5RESTful风格参数 2.6文件上传处理…

mysql-窗口函数一

目录 一、感受一下分组与窗口函数的区别 二、滑动窗口&#xff08;子窗口&#xff09;大小的确认 2.1 分组函数下order by使用 2.2 窗口子句 2.3 执行流程 三、函数使用 窗口函数需要mysql的版本大于等于8才行&#xff0c;可以先检查一下自己的mysql版本是多少 select ve…

解决在Mac上无法使用“ll”命令

在 macOS 上&#xff0c;ll 命令是一个常见的别名&#xff0c;它通常是指向 ls -l 的。但是&#xff0c;如果你看到 zsh: command not found: ll&#xff0c;这意味着你当前的 zsh 配置中没有设置 ll 作为别名。 解决方法&#xff1a; 1. 使用 ls -l 命令 如果只是想查看目录…

GTA5(传承/增强) 13980+真车 超跑 大型载具MOD整合包+最新GTA6大型地图MOD 5月最新更新

1500超跑载具 1000普通超跑 1500真车超跑 各种军载具1000 各种普通跑车 船舶 飞机 1000 人物1500 添加式led载具1000 超级英雄最新版 添加添加式武器MOD1000 添加地图MOD500 添加超跑载具2000 当前共计1.2wMOD 4月2日更新 新增770menyoo地图 当前共计12770 新增48款超级英雄最新…

初学Vue之记事本案例

初学Vue之记事本案例 案例功能需求相关Vue知识案例实现1.实现方法及代码2.演示 案例收获与总结 案例功能需求 基于Vue实现记事功能&#xff08;不通过原生JS实现&#xff09; 1.点击保存按钮将文本框的内容显示在特定位置&#xff0c;且清空文本框内容 2.点击清空按钮&#x…

一个linux系统电脑,一个windows电脑,怎么实现某一个文件夹共享

下载Samba linux主机名字不能超过15个字符 sudo dnf install samba samba-client -y 创建共享文件夹 sudo mkdir /shared 配置文件 vim /etc/samba/smb.conf [shared] path /shared available yes valid users linux电脑用户 read only no browsable yes p…

树莓派5+edge-tts 语音合成并进行播放测试

简介 Edge-TTS 是一个基于微软 Edge 浏览器的开源文本转语音(TTS)工具,主要用于将文本转换为自然流畅的语音。它利用了微软 Azure 的 TTS 技术,支持多种语言和声音,同时具备高质量的语音合成能力。这里简单演示在树莓派中安装该项目进行简单测试。 开源仓库地址:https:/…