python加载训练好的模型并进行叶片实例分割预测

要基于“GMT: Guided Mask Transformer for Leaf Instance Segmentation”进行代码复现,可按照以下步骤利用Python实现:

  1. 环境配置
    • 克隆仓库:在终端中使用git clone https://github.com/vios-s/gmt-leaf-ins-seg.git命令,将项目代码克隆到本地。
    • 创建虚拟环境(可选但推荐):使用condavenv创建虚拟环境,例如conda create -n gmt_env python=3.8,激活环境conda activate gmt_env
    • 安装依赖:进入克隆的项目目录,执行conda env create -f environment.yml,按照environment.yml文件中的配置安装所需的Python库。若environment.yml文件有问题,也可根据报错信息手动安装缺失的库,常见的库如torchtorchvisiontransformers等。
  2. 了解代码结构
    • mask2former目录:存放GMT模型架构相关代码,如guide_xxx.py文件,深入理解这些文件中定义的模型结构和功能,有助于后续的修改和调试。
    • harmonic目录:get_embeddings.py包含训练引导函数的方法;guide_functions文件夹存放针对不同数据集训练好的引导函数。
    • configs目录:存储不同数据集的配置文件,根据实际使用的数据集选择合适的配置,或根据需求进行修改。
    • guide_train_net.py:这是GMT训练代码的核心文件,负责模型训练的主要逻辑。
    • submission/results_in_paper目录:存放论文中的结果,可用于对比验证自己复现的结果。
  3. 训练模型
    • 准备数据集:根据项目需求,准备相应的叶片实例分割数据集,并按照configs目录下配置文件的要求组织数据格式,通常包括训练集、验证集和测试集。
    • 修改配置:打开configs目录下的配置文件,根据数据集路径、训练参数(如学习率、批次大小、训练轮数等)和模型设置(如模型架构选择)进行调整。
    • 开始训练:在终端中运行python guide_train_net.py命令,开始训练模型。训练过程中,可通过日志信息观察训练进度、损失值变化等情况,若出现问题,可根据报错信息定位和解决。
  4. 模型评估与使用
    • 评估模型:训练完成后,利用测试集评估模型性能,参考论文中使用的评估指标(如mAP、IoU等),对比自己复现的结果与submission/results_in_paper中的结果,评估复现效果。
    • 使用模型:若对复现结果满意,可在实际应用中使用训练好的模型进行叶片实例分割任务,根据项目需求编写代码调用模型进行预测和处理。

以下为你提供一个简单的Python代码示例,用于加载训练好的模型并进行叶片实例分割预测。此示例假设你已经完成了模型的训练,并且保存了模型的权重文件。

import torch
import torchvision.transforms as transforms
from PIL import Image
import os# 假设这里是你定义的GMT模型类,需要根据实际代码修改
class GMTModel(torch.nn.Module):def __init__(self):super(GMTModel, self).__init__()# 这里简单示例,实际需要根据模型结构实现self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=3, padding=1)def forward(self, x):x = self.conv1(x)return x# 加载模型权重
def load_model(model_path):model = GMTModel()if os.path.exists(model_path):model.load_state_dict(torch.load(model_path))model.eval()print("模型加载成功")else:print("模型文件不存在")return model# 预处理图像
def preprocess_image(image_path):image = Image.open(image_path).convert('RGB')transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])image = transform(image).unsqueeze(0)return image# 进行预测
def predict(model, image):with torch.no_grad():output = model(image)# 这里简单示例,实际需要根据模型输出进行后处理_, predicted = torch.max(output.data, 1)return predicted# 主函数
def main():model_path = 'path/to/your/trained_model.pth'image_path = 'path/to/your/image.jpg'model = load_model(model_path)image = preprocess_image(image_path)prediction = predict(model, image)print("预测结果:", prediction)if __name__ == "__main__":main()    

代码说明

  1. 模型定义GMTModel类为简单示例,你需要依据实际的模型结构对其进行修改。
  2. 加载模型权重load_model函数会加载训练好的模型权重,并且将模型设置为评估模式。
  3. 图像预处理preprocess_image函数会对输入的图像进行预处理,包含调整大小、转换为张量以及归一化操作。
  4. 预测predict函数会使用加载好的模型对预处理后的图像进行预测,并且返回预测结果。
  5. 主函数main函数会调用上述函数,完成模型加载、图像预处理和预测的整个流程。

请根据实际情况对代码中的路径和模型结构进行修改。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/75637.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI平台初步规划实现和想法

要实现一个类似Coze的工作流搭建引擎,可以结合SmartEngine作为后端工作流引擎,ReactFlow作为前端流程图渲染工具,以及Ant Design作为UI组件库。以下是实现的步骤和关键点: ### 1. 后端工作流引擎(SmartEngine&#xf…

Pycharm 启动时候一直扫描索引/更新索引 Update index/Scanning files to index

多个项目共用一个虚拟环境,有助于加快PyCharm 启动吗 chatgpt 4o认为很有帮助,gemini 2.5pro认为没鸟用,我更认可gemini的观点。不知道他们谁在一本正经胡说八道。 -------- 打开pycharm的时候,下方的进度条一直显示在扫描文件…

dify新版本1.1.3的一些问题

本人使用window版本上构建dify,采用docker方法启动 1、拉取镜像问题 windows上更改拉取镜像仓库地址 优化加速参考:青春不留白/Docker-hub 如果还是拉取比较慢的话,建议科学上网解决。 2、启动问题 发生报错Dify:failed to init dify plu…

4.2-3 fiddler抓取手机接口

安卓: 长按手机连接的WiFi,点击修改网络 把代理改成手动,服务器主机选择自己电脑的IP地址,端口号为8888(在dos窗口输入ipconfig查询IP地址,为ipv4) 打开手机浏览器,输入http://自己…

Spring Boot中自定义注解的创建与使用

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

2024第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组

记录刷题的过程、感悟、题解。 希望能帮到,那些与我一同前行的,来自远方的朋友😉 大纲: 1、握手问题-(解析)-简单组合问题(别人叫她 鸽巢定理)😇,感觉叫高级了…

HTML应用指南:利用POST请求获取三大运营商5G基站位置信息(一)

在当前信息技术迅猛发展的背景下,第五代移动通信(5G)技术作为新一代的无线通信标准,正逐步成为推动社会进步和产业升级的关键驱动力。三大电信运营商(中国移动、中国联通、中国电信)在全国范围内的5G基站部署,不仅极大地提升了网络性能,也为智能城市、物联网、自动驾驶…

C++学习之线程

目录 1.进程和线程的概念 2.线程内核三级映射 3.线程优缺点 4.创建线程和获取线程ID的函数 5.创建子线程 6.循环创建N个子线程 7.子线程传参地址错误演示分析 8.主、子线程共享全局变量、堆空间 9.线程退出 10.pthread join回收线程退出值 11.pthread_cancel 12.杀死…

element-plus中,表单校验的使用

目录 一.案例1:给下面的表单添加校验 1.目的要求 2.步骤 ①给需要校验的el-form-item项,添加prop属性 ②定义一个表单校验对象,里面存放了每一个prop的检验规则 ③给el-form组件,添加:rules属性 ④给el-form组件&#xff0…

团体设计程序天梯赛L2-025 # 分而治之

文章目录 题目解读输入格式输出格式 思路Ac Code参考 题目解读 在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可…

Arduino示例代码讲解:Knock Sensor 敲击感知器

Arduino示例代码讲解:Knock Sensor 敲击感知器 Knock Sensor 敲击感知器功能概述硬件部分:软件部分:代码逐行解释定义常量定义变量`setup()` 函数`loop()` 函数工作原理Knock Sensor 敲击感知器 这段代码是一个Arduino示例程序,用于检测敲击声。它通过读取一个压电元件(p…

【百日精通JAVA | SQL篇 | 第三篇】 MYSQL增删改查

SQL得最核心就是增删改查 一个后端开发,在工作中,最常见的场景就是CRUD。 插入数据 insert into student values (1,zhangsan); 指定列插入数据 同时多个列明之间使用逗号,来分割 insert into student (name) values (zhaoliu); 这个黑框…

ggscitable包通过曲线拟合深度挖掘一个陌生数据库非线性关系

很多新手刚才是总是觉得自己没什么可以写的,自己不知道选什么题材进行分析,使用scitable包ggscitable包后这个完全不用担心,选题多到你只会担心你写不完,写得不够快。 既往咱们使用scitable包交互效应深度挖掘一个陌生数据库&…

ctfshow VIP题目限免 版本控制泄露源码2

根据题目提示是版本控制泄露源码 版本控制(Version Control)是一种在软件开发和其他领域中广泛使用的技术,用于管理文件或项目的变更历史。 主流的版本控制工具: ‌Git‌:目前最流行的分布式版本控制系统。‌SVN‌&am…

2025-04-05 吴恩达机器学习5——逻辑回归(2):过拟合与正则化

文章目录 1 过拟合1.1 过拟合问题1.2 解决过拟合 2 正则化2.1 正则化代价函数2.2 线性回归的正则化2.3 逻辑回归的正则化 1 过拟合 1.1 过拟合问题 欠拟合(Underfitting) 模型过于简单,无法捕捉数据中的模式,导致训练误差和测试误…

如何用人工智能大模型,进行作业批改?

今天我们学习人工智能大模型如何进行作业批改。手把手学习视频请访问https://edu.csdn.net/learn/40402/666452 第一步,进入讯飞星火。打开google浏览器,输入百度地址后,搜索”讯飞星火”,在搜索的结果中,点第一个讯飞…

C++学习笔记之 模板|函数模板|类模板

函数模板 类模板 定义:函数模板是建立一个通用函数,它所用到的数据的类型(包括返回值类型、形参类型、局部变量类型 )可以不具体指定,而是用一个虚拟的类型来代替(用标识符占位),在…

正则入门到精通

​ 一、正则表达式入门​ 正则表达式本质上是一串字符序列,用于定义一个文本模式。通过这个模式,我们可以指定要匹配的文本特征。例如,如果你想匹配一个以 “abc” 开头的字符串,正则表达式可以写作 “^abc”,其中 …

对备忘录模式的理解

对备忘录模式的理解 一、场景1、题目【[来源](https://kamacoder.com/problempage.php?pid1095)】1.1 题目描述1.2 输入描述1.3 输出描述1.4 输入示例1.5 输出示例 2、理解需求 二、不采用备忘录设计模式1、代码2、问题3、错误的备忘录模式 三、采用备忘录设计模式1、代码1.1 …

86.方便的double转string属性 C#例子 WPF例子

在C#开发中,属性封装是一种常见的设计模式,它可以帮助我们更好地控制数据的访问和修改,同时提供更灵活的功能扩展。今天,我们就来探讨一个简单而优雅的属性封装示例:Power 和 PowerFormatted。 1. 问题背景 在实际开…