OpenCV(6):图像边缘检测

        图像边缘检测是计算机视觉和图像处理中的一项基本任务,它用于识别图像中亮度变化明显的区域,这些区域通常对应于物体的边界。是 OpenCV 中常用的边缘检测函数及其说明:

函数算法说明适用场景
cv2.Canny()Canny 边缘检测多阶段算法,检测效果较好,噪声抑制能力强。通用边缘检测,适合大多数场景。
cv2.Sobel()Sobel 算子基于一阶导数的边缘检测,可以检测水平和垂直边缘。检测水平和垂直边缘。
cv2.Scharr()Scharr 算子Sobel 算子的改进版本,对边缘的响应更强。检测细微的边缘。
cv2.Laplacian()Laplacian 算子基于二阶导数的边缘检测,对噪声敏感。检测边缘和角点。

1 Canny 边缘检测 (cv2.Canny())

        Canny 边缘检测是一种多阶段的边缘检测算法,由 John F. Canny 在 1986 年提出。Canny 边缘检测被认为是边缘检测的"金标准",因为它能够在噪声抑制和边缘定位之间取得良好的平衡。

1.1 Canny 边缘检测的步骤

        Canny 边缘检测算法主要包括以下几个步骤:

  1. 噪声抑制:使用高斯滤波器对图像进行平滑处理,以减少噪声的影响。
  2. 计算梯度:使用 Sobel 算子计算图像的梯度幅值和方向。
  3. 非极大值抑制:沿着梯度方向,保留局部梯度最大的像素点,抑制其他像素点。
  4. 双阈值检测:使用两个阈值(低阈值和高阈值)来确定真正的边缘。高于高阈值的像素点被认为是强边缘,低于低阈值的像素点被抑制,介于两者之间的像素点如果与强边缘相连则保留。
  5. 边缘连接:通过滞后阈值处理,将弱边缘与强边缘连接起来,形成完整的边缘。

1.2 使用 OpenCV 实现 Canny 边缘检测

        在 OpenCV 中,可以使用 cv2.Canny() 函数来实现 Canny 边缘检测。该函数的原型如下:

edges = cv2.Canny(image, threshold1, threshold2, apertureSize=3, L2gradient=False)
  • image:输入图像,必须是单通道的灰度图像。
  • threshold1:低阈值。
  • threshold2:高阈值。
  • apertureSize:Sobel 算子的孔径大小,默认为 3。
  • L2gradient:是否使用 L2 范数计算梯度幅值,默认为 False(使用 L1 范数)。
import cv2# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 应用 Canny 边缘检测
edges = cv2.Canny(image, 100, 200)# 显示结果
cv2.imshow('Canny Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

2 Sobel 算子 (cv2.Sobel())

        Sobel 算子是一种基于梯度的边缘检测算子,它通过计算图像在水平和垂直方向上的梯度来检测边缘。Sobel 算子结合了高斯平滑和微分操作,因此对噪声具有一定的抑制作用。

2.1 Sobel 算子的原理

        Sobel 算子使用两个 3x3 的卷积核分别计算图像在水平和垂直方向上的梯度:

  • 水平方向的卷积核:
    [-1, 0, 1]
    [-2, 0, 2]
    [-1, 0, 1]
  • 垂直方向的卷积核:
    [-1, -2, -1]
    [ 0,  0,  0]
    [ 1,  2,  1]

        通过这两个卷积核,可以分别得到图像在水平和垂直方向上的梯度 Gx 和 Gy。最终的梯度幅值可以通过以下公式计算:

G = sqrt(Gx^2 + Gy^2)

2.2 使用 OpenCV 实现 Sobel 算子

        在 OpenCV 中,可以使用 cv2.Sobel() 函数来计算图像的梯度。该函数的原型如下:

dst = cv2.Sobel(src, ddepth, dx, dy, ksize=3, scale=1, delta=0, borderType=cv2.BORDER_DEFAULT)
  • src:输入图像。
  • ddepth:输出图像的深度,通常使用 cv2.CV_64F
  • dx:x 方向上的导数阶数。
  • dy:y 方向上的导数阶数。
  • ksize:Sobel 核的大小,默认为 3。
  • scale:缩放因子,默认为 1。
  • delta:可选的 delta 值,默认为 0。
  • borderType:边界填充类型,默认为 cv2.BORDER_DEFAULT
import cv2
import numpy as np# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 计算 x 方向的梯度
sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)# 计算 y 方向的梯度
sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)# 计算梯度幅值
sobel_combined = np.sqrt(sobel_x ** 2 + sobel_y ** 2)# 显示结果
cv2.imshow('Sobel X', sobel_x)
cv2.imshow('Sobel Y', sobel_y)
cv2.imshow('Sobel Combined', sobel_combined)
cv2.waitKey(0)
cv2.destroyAllWindows()

3 Scharr算子(cv2.Scharr())

3.1 Scharr算子的原理

        在离散的空间上,有很多方法可以用来计算近似导数,在使用 3×3 的 Sobel 算子时,可能计算结果并不太精准。OpenCV 提供了 Scharr 算子,该算子具有和 Sobel 算子同样的速度,且精度更高。可以将 Scharr 算子看作对 Sobel 算子的改进,其核通常为:

3.2 使用 OpenCV 实现 Scharr 算子

        OpenCV 提供了函数 cv2.Scharr()来计算 Scharr 算子,其语法格式如下:

dst = cv2.Scharr( src, ddepth, dx, dy[, scale[, delta[, borderType]]] )
  •  dst 代表输出图像。
  • src 代表原始图像。
  • ddepth 代表输出图像深度。该值与函数 cv2.Sobel()中的参数 ddepth 的含义相同。
  • dx 代表 x 方向上的导数阶数。
  • dy 代表 y 方向上的导数阶数。
  • scale 代表计算导数值时的缩放因子,该项是可选项,默认值是 1,表示没有缩放。
  • delta 代表加到目标图像上的亮度值,该项是可选项,默认值为 0。
  • borderType 代表边界样式。
import cv2# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 计算 x 方向的梯度
scharr_x = cv2.Scharr(image, cv2.CV_64F, 1, 0)# 计算 y 方向的梯度
scharr_y = cv2.Scharr(image, cv2.CV_64F, 0, 1)# 计算梯度幅值
scharr_combined = cv2.addWeighted(scharr_x, 0.5, scharr_y, 0.5, 0)# 显示结果
cv2.imshow('Scharr X', scharr_x)
cv2.imshow('Scharr Y', scharr_y)
cv2.imshow('Scharr Combined', scharr_combined)
cv2.waitKey(0)
cv2.destroyAllWindows()

4 Laplacian 算子 (cv2.Laplacian())

        Laplacian 算子是一种二阶微分算子,它通过计算图像的二阶导数来检测边缘。Laplacian 算子对噪声比较敏感,因此通常在使用之前会对图像进行高斯平滑处理。

4.1 Laplacian 算子的原理

        Laplacian 算子使用以下卷积核来计算图像的二阶导数:

[ 0,  1,  0]
[ 1, -4,  1]
[ 0,  1,  0]

        通过这个卷积核,可以得到图像的 Laplacian 值。Laplacian 值较大的区域通常对应于图像的边缘。

4.2 使用 OpenCV 实现 Laplacian 算子

        在 OpenCV 中,可以使用 cv2.Laplacian() 函数来计算图像的 Laplacian 值。该函数的原型如下:

dst = cv2.Laplacian(src, ddepth, ksize=1, scale=1, delta=0, borderType=cv2.BORDER_DEFAULT)
  • src:输入图像。
  • ddepth:输出图像的深度,通常使用 cv2.CV_64F
  • ksize:Laplacian 核的大小,默认为 1。
  • scale:缩放因子,默认为 1。
  • delta:可选的 delta 值,默认为 0。
  • borderType:边界填充类型,默认为 cv2.BORDER_DEFAULT
import cv2# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 应用 Laplacian 算子
laplacian = cv2.Laplacian(image, cv2.CV_64F)# 显示结果
cv2.imshow('Laplacian', laplacian)
cv2.waitKey(0)
cv2.destroyAllWindows()

5 常用边缘检测函数对比

函数算法优点缺点适用场景
cv2.Canny()Canny 边缘检测噪声抑制能力强,边缘检测效果好。参数调节较为复杂。通用边缘检测,适合大多数场景。
cv2.Sobel()Sobel 算子计算简单,适合检测水平和垂直边缘。对噪声敏感,边缘检测效果一般。检测水平和垂直边缘。
cv2.Scharr()Scharr 算子对边缘的响应更强,适合检测细微边缘。对噪声敏感。检测细微的边缘。
cv2.Laplacian()Laplacian 算子可以检测边缘和角点。对噪声非常敏感。检测边缘和角点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/70734.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电子科技大学考研复习经验分享

电子科技大学考研复习经验分享 本人情况:本科就读于电科软院,24年2月开始了解考研,24年3月开始数学,9月决定考本院(开始全天候图书馆学习)并开始专业课学习,11月底开始政治学习,最后…

go基础语法

go基础语法 先下载安装go,然后到vscode下载go插件 1. 基础 输入输出 package main import "fmt" func main(){a:1var b2 var c int //不给初始值得标出变量类型 c3var d stringfmt.Scanf("%s",&d) //接收用户输入fmt.Printf("Hell…

硬件基础(3):三极管(1):理论基础

目录 一、背景 二、定义 三、分类 四、工作原理 NPN三极管工作原理 基本工作原理 电流放大倍数(增益) 输入特性 1. 输入特性的基本概念 2. 输入特性曲线的形态 3. 输入特性曲线的具体分析 输出特性 1. 输出特性图的基本概念 2. 输出特性曲…

Git最佳实践指南(Windows/Linux双系统详解)

Git最佳实践指南:从入门到熟练(Windows/Linux双系统详解) 一、环境搭建与基础配置(适用Windows/Linux) 1.1 Git安装与验证 # Windows系统安装(推荐Chocolatey包管理) # 直接下载git二进制文件…

吃一堑长一智

工作中经历,有感触记录下 故事一 以前在一家公司时,自己是一名开发人员,遇到问题请教领导解决方案,当时领导给了建议,后来上线后出问题了,背了锅。心里想的是领导说这样做的呀,为什么出问题还…

联想 SR590 服务器 530-8i RAID 控制器更换损坏的硬盘

坏了的硬盘会自动亮黄灯。用一个空的新盘来替换,新盘最好不要有东西。但是有东西可能也没啥,因为我看 RAID 控制器里有格式化的选项 1. 从 IPMI 把服务器关机,电源键进入绿色闪烁状态 2. 断电,推开塑料滑块拉出支架,…

前端浏览器开发中的浏览器兼容问题【持续更新】

目录 一、什么是浏览器兼容问题 二、JavaScript兼容问题及解决方案 2.1addEventListener与attachEvent的区别 2.2集合类对象问题 2.3自定义属性问题 2.4event.x与event.y问题 2.5window.location.href问题 2.6事件委托方法 三、CSS兼容问题及解决方案 3.1浏览器CSS样式初…

【c语言】字符函数和字符串函数(1)

一、字符分类函数 c语言中有部分函数是专门做字符分类的,也就是一个字符是属于什么类型的字符,这些函 数的使用要包含一个头文件ctype.h中。 其具体如下图所示: 这些函数的使用方式都类似,下面我们通过一个函数来看其…

LeetCodehot 力扣热题100 全排列

这段代码的目的是计算给定整数数组的所有全排列(permutations),并返回一个包含所有排列的二维数组。 思路解析 在这段代码中,采用了 深度优先搜索(DFS) 和 回溯 的方法来生成所有的排列。 关键步骤&#xf…

【Qt源码】窥视信号槽实现机制

为了便于通过调试进源码探究下Qt信号槽实现原理,这里简单写一段代码如下所示。 1.自定义信号槽连接 MainWindow::MainWindow(QWidget *parent): QMainWindow(parent), ui(new Ui::MainWindow) {ui->setupUi(this);QObject::connect(ui->pushButton,&QPu…

六十天前端强化训练之第二天CSS选择器与盒模型深度解析

欢迎来到编程星辰海的博客讲解 目录 一、CSS 核心概念 1. 三种引入方式 2. CSS 注释 3. 常见单位系统 二、CSS选择器核心知识 1. 基础选择器类型 2. 组合选择器 3. 伪类选择器(部分示例) 4. 优先级计算规则 三、盒模型深度解析 1. 标准盒模型图…

【DeepSeek】-macOS本地终端部署后运行DeepSeek如何分析图片

【DeepSeek】-macOS本地终端部署后运行DeepSeek如何分析图片 根据您的需求,目前需要了解以下几个关键点及分步解决方案: --- 一、现状分析 1. Ollama 的限制: - 目前Ollama主要面向文本大模型,原生不支持直接上传/处理图片 …

【音视频】音视频录制、播放原理

一、音视频录制原理 通常,音视频录制的步骤如下图所示: 我们分别从音频和视频开始采样,通过麦克风和摄像头来接受我们的音频信息和图像信息,这通常是同时进行的,不过,通常视频的采集会比音频的采集慢&…

解锁养生密码,拥抱健康生活

在快节奏的现代生活中,养生不再是一种选择,而是我们保持活力、提升生活质量的关键。它不是什么高深莫测的学问,而是一系列融入日常的简单习惯,每一个习惯都在为我们的健康加分。 早晨,当第一缕阳光洒进窗户&#xff0c…

7种内外网数据交换方案全解析 哪种安全、高效、合规?

内外网数据交换方案主要解决了企业跨网络数据传输中的安全、效率与合规性问题。通过采用先进的加密技术、高效的数据传输协议以及严格的审批和审计机制,该方案确保了数据在内外网之间的安全交换,同时提高了传输效率,并满足了企业对数据合规性…

【WSL2】 Ubuntu20.04 GUI图形化界面 VcXsrv ROS noetic Vscode 主机代理 配置

【WSL2】 Ubuntu20.04 GUI图形化界面 VcXsrv ROS noetic Vscode 主机代理 配置 前言整体思路安装 WSL2Windows 环境升级为 WIN11 专业版启用window子系统及虚拟化 安装WSL2通过 Windows 命令提示符安装 WSL安装所需的 Linux 发行版(如 Ubuntu 20.04)查看…

监听其他音频播放时暂停正在播放的音频

要实现当有其他音频播放时暂停当前音频,你可以使用全局事件总线或 Vuex 来管理音频播放状态。这里我将展示如何使用一个简单的事件总线来实现这个功能。 首先,你需要创建一个事件总线。你可以在项目的一个公共文件中创建它,例如 eventBus.js…

Android数据库SQLite、Room、Realm、MMKV/DataStore、ObjectBox性能比较

Android主流数据库基础特点核心数据库特性与性能对比维度总结 在 Android 开发中,数据库选型直接影响应用的性能、开发效率和可维护性。不同数据库的存储限制,比如常用的SharedPreferences、SQLite、还有基于SQLite封装的greenDao等,这些似乎…

Solidity study

Solidity 开发环境 Solidity编辑器:Solidity编辑器是一种专门用于编写和编辑Solidity代码的编辑器。常用的Solidity编辑器包括Visual Studio Code、Atom和Sublime Text。以太坊开发环境:以太坊开发环境(Ethereum Development Environment&am…

【废物研究生零基础刷算法】DFS与递归(一)典型题型

文章目录 跳台阶递归实现指数级枚举递归实现排列型枚举上面两题总结 递归实现组合型枚举P1036选数 跳台阶 思路: 如果 n 1,只有一种走法(走 1 级)。如果 n 2,有两种走法(11 或 2)。对于 n &g…