深度学习之神经网络框架搭建及模型优化

神经网络框架搭建及模型优化

目录

  • 神经网络框架搭建及模型优化
    • 1 数据及配置
      • 1.1 配置
      • 1.2 数据
      • 1.3 函数导入
      • 1.4 数据函数
      • 1.5 数据打包
    • 2 神经网络框架搭建
      • 2.1 框架确认
      • 2.2 函数搭建
      • 2.3 框架上传
    • 3 模型优化
      • 3.1 函数理解
      • 3.2 训练模型和测试模型代码
    • 4 最终代码测试
      • 4.1 SGD优化算法
      • 4.2 Adam优化算法
      • 4.3 多次迭代

1 数据及配置


1.1 配置

需要安装PyTorch,下载安装torch、torchvision、torchaudio,GPU需下载cuda版本,CPU可直接下载

cuda版本较大,最后通过控制面板pip install +存储地址离线下载,
CPU版本需再下载安装VC_redist.x64.exe,可下载上述三个后运行,通过报错网址直接下载安装

1.2 数据

使用的是 torchvision.datasets.MNIST的手写数据,包括特征数据和结果类别

1.3 函数导入

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

1.4 数据函数

train_data = datasets.MNIST(root='data',        # 数据集存储的根目录train=True,         # 加载训练集download=True,      # 如果数据集不存在,自动下载transform=ToTensor() # 将图像转换为张量
)
  • root 指定数据集存储的根目录。如果数据集不存在,会自动下载到这个目录。
  • train 决定加载训练集还是测试集。True 表示加载训练集,False 表示加载测试集。
  • download 如果数据集不在 root 指定的目录中,是否自动下载数据集。True 表示自动下载。
  • transform 对加载的数据进行预处理或转换。通常用于将数据转换为模型所需的格式,如将图像转换为张量。

1.5 数据打包

train_dataloader = DataLoader(train_data, batch_size=64)

  • train_data, 打包数据
  • batch_size=64,打包个数

代码展示:

import torch
print(torch.__version__)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensortrain_data = datasets.MNIST(root = 'data',train = True,download = True,transform = ToTensor()
)
test_data = datasets.MNIST(root = 'data',train = False,download = True,transform = ToTensor()
)
print(len(train_data))
print(len(test_data))
from matplotlib import pyplot as plt
figure = plt.figure()
for i in range(9):img,label = train_data[i+59000]figure.add_subplot(3,3,i+1)plt.title(label)plt.axis('off')plt.imshow(img.squeeze(),cmap='gray')a = img.squeeze()
plt.show()train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader= DataLoader(test_data, batch_size=64)

运行结果:
在这里插入图片描述

在这里插入图片描述

调试查看:

在这里插入图片描述
:

2 神经网络框架搭建


2.1 框架确认

在搭建神经网络框架前,需先确认建立怎样的框架,目前并没有理论的指导,凭经验建立框架如下:

输入层:输入的图像数据(28*28)个神经元。
中间层1:全连接层,128个神经元,
中间层2:全连接层,256个神经元,
输出层:全连接层,10个神经元,对应10个类别。
需注意,中间层需使用激励函数激活,对累加数进行非线性的映射,以及forward前向传播过程的函数名不可更改

2.2 函数搭建

  • nn.Flatten() , 将输入展平为一维向量
  • nn.Linear(28*28, 128) ,全连接层,需注意每个连接层的输入输出需前后对应
  • torch.sigmoid(x),对中间层的输出应用Sigmoid激活函数
# 定义一个神经网络类,继承自 nn.Module
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()  # 调用父类 nn.Module 的构造函数# 定义网络层self.flatten = nn.Flatten()  # 将输入展平为一维向量,适用于将图像数据(如28x28)展平为784维self.hidden1 = nn.Linear(28*28, 128)  # 第一个全连接层,输入维度为784(28*28),输出维度为128self.hidden2 = nn.Linear(128, 256)    # 第二个全连接层,输入维度为128,输出维度为256self.out = nn.Linear(256, 10)         # 输出层,输入维度为256,输出维度为10(对应10个类别)# 定义前向传播过程def forward(self, x):x = self.flatten(x)       # 将输入数据展平x = self.hidden1(x)       # 通过第一个全连接层x = torch.sigmoid(x)      # 对第一个全连接层的输出应用Sigmoid激活函数x = self.hidden2(x)       # 通过第二个全连接层x = torch.sigmoid(x)      # 对第二个全连接层的输出应用Sigmoid激活函数x = self.out(x)           # 通过输出层return x                  # 返回最终的输出

2.3 框架上传

  • device = ‘cuda’ if torch.cuda.is_available() else ‘mps’ if torch.backends.mps.is_available() else ‘cpu’,确认设备, 检查是否有可用的GPU设备,如果有则使用GPU,否则使用CPU
  • model = NeuralNetwork().to(device),框架上传到GPU/CPU

模型输出展示:

在这里插入图片描述

3 模型优化


3.1 函数理解

  • optimizer = torch.optim.Adam(model.parameters(), lr=0.001),定义优化器:
    • Adam()使用Adam优化算法,也可为SGD等优化算法
    • model.parameters()为优化模型的参数
    • lr为学习率/梯度下降步长为0.001
  • loss_fn = nn.CrossEntropyLoss(pre,y),定义损失函数,使用交叉熵损失函数,适用于分类任务
    • pre,预测结果
    • y,真实结果
    • loss_fn.item(),当前损失值
  • model.train() ,将模型设置为训练模式,模型参数是可变
  • x, y = x.to(device), y.to(device),将数据移动到指定设备(GPU或CPU)
  • 反向传播:清零梯度,计算梯度,更新模型参数
    • optimizer.zero_grad()清零梯度缓存
      loss.backward(), 计算梯度
      optimizer.step()更新模型参数
  • model.eval(),将模型设置为评估模式模型参数是不可变
  • with torch.no_grad(),禁用梯度计算,在测试过程中不需要计算梯度

3.2 训练模型和测试模型代码

optimizer = torch.optim.Adam(model.parameters(),lr=0.001)
loss_fn = nn.CrossEntropyLoss()
def train(dataloader,model,loss_fn,optimizer):model.train()batch_size_num = 1for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)loss = loss_fn(pred,y)optimizer.zero_grad()loss.backward()optimizer.step()loss_value = loss.item()if batch_size_num %100 ==0:print(f'loss: {loss_value:>7f}  [number: {batch_size_num}]')batch_size_num +=1train(train_dataloader,model,loss_fn,optimizer)def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss,correct = 0,0with torch.no_grad():for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)test_loss += loss_fn(pred,y).item()correct +=(pred.argmax(1) == y).type(torch.float).sum().item()a = (pred.argmax(1)==y)b = (pred.argmax(1)==y).type(torch.float)test_loss /=num_batchescorrect /= sizeprint(f'test result: \n Accuracy: {(100*correct)}%, Avg loss:{test_loss}')

4 最终代码测试


4.1 SGD优化算法

torch.optim.SGD(model.parameters(),lr=0.01)

代码展示:

import torchprint(torch.__version__)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensortrain_data = datasets.MNIST(root = 'data',train = True,download = True,transform = ToTensor()
)
test_data = datasets.MNIST(root = 'data',train = False,download = True,transform = ToTensor()
)
print(len(train_data))
print(len(test_data))
from matplotlib import pyplot as plt
figure = plt.figure()
for i in range(9):img,label = train_data[i+59000]figure.add_subplot(3,3,i+1)plt.title(label)plt.axis('off')plt.imshow(img.squeeze(),cmap='gray')a = img.squeeze()
plt.show()train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader= DataLoader(test_data, batch_size=64)
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
print(f'Using {device} device')
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.hidden1 = nn.Linear(28*28,128)self.hidden2 = nn.Linear(128, 256)self.out = nn.Linear(256,10)def forward(self,x):x = self.flatten(x)x = self.hidden1(x)x = torch.sigmoid(x)x = self.hidden2(x)x = torch.sigmoid(x)x = self.out(x)return x
model = NeuralNetwork().to(device)
#
print(model)
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
loss_fn = nn.CrossEntropyLoss()
def train(dataloader,model,loss_fn,optimizer):model.train()batch_size_num = 1for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)loss = loss_fn(pred,y)optimizer.zero_grad()loss.backward()optimizer.step()loss_value = loss.item()if batch_size_num %100 ==0:print(f'loss: {loss_value:>7f}  [number: {batch_size_num}]')batch_size_num +=1def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss,correct = 0,0with torch.no_grad():for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)test_loss += loss_fn(pred,y).item()correct +=(pred.argmax(1) == y).type(torch.float).sum().item()a = (pred.argmax(1)==y)b = (pred.argmax(1)==y).type(torch.float)test_loss /=num_batchescorrect /= sizeprint(f'test result: \n Accuracy: {(100*correct)}%, Avg loss:{test_loss}')
#train(train_dataloader,model,loss_fn,optimizer)
test(test_dataloader,model,loss_fn)

运行结果:
在这里插入图片描述

4.2 Adam优化算法

自适应算法,torch.optim.Adam(model.parameters(),lr=0.01)

运行结果:
在这里插入图片描述

4.3 多次迭代

代码展示:

import torchprint(torch.__version__)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensortrain_data = datasets.MNIST(root = 'data',train = True,download = True,transform = ToTensor()
)
test_data = datasets.MNIST(root = 'data',train = False,download = True,transform = ToTensor()
)
print(len(train_data))
print(len(test_data))
from matplotlib import pyplot as plt
figure = plt.figure()
for i in range(9):img,label = train_data[i+59000]figure.add_subplot(3,3,i+1)plt.title(label)plt.axis('off')plt.imshow(img.squeeze(),cmap='gray')a = img.squeeze()
plt.show()train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader= DataLoader(test_data, batch_size=64)
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
print(f'Using {device} device')
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.hidden1 = nn.Linear(28*28,128)self.hidden2 = nn.Linear(128, 256)self.out = nn.Linear(256,10)def forward(self,x):x = self.flatten(x)x = self.hidden1(x)x = torch.sigmoid(x)x = self.hidden2(x)x = torch.sigmoid(x)x = self.out(x)return x
model = NeuralNetwork().to(device)
#
print(model)
optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
loss_fn = nn.CrossEntropyLoss()
def train(dataloader,model,loss_fn,optimizer):model.train()batch_size_num = 1for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)loss = loss_fn(pred,y)optimizer.zero_grad()loss.backward()optimizer.step()loss_value = loss.item()if batch_size_num %100 ==0:print(f'loss: {loss_value:>7f}  [number: {batch_size_num}]')batch_size_num +=1def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss,correct = 0,0with torch.no_grad():for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)test_loss += loss_fn(pred,y).item()correct +=(pred.argmax(1) == y).type(torch.float).sum().item()a = (pred.argmax(1)==y)b = (pred.argmax(1)==y).type(torch.float)test_loss /=num_batchescorrect /= sizeprint(f'test result: \n Accuracy: {(100*correct)}%, Avg loss:{test_loss}')
#train(train_dataloader,model,loss_fn,optimizer)
test(test_dataloader,model,loss_fn)
#
e = 30
for i in range(e):print(f'e: {i+1}\n------------------')train(train_dataloader, model, loss_fn, optimizer)
print('done')test(test_dataloader, model, loss_fn)

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69619.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习之心的创作纪念日

机缘 今天,是我成为创作者的第1460天。 在这段时间里,获得了很大的成长。 虽然日常忙碌但还在坚持创作、初心还在。 日常 创作已经成为我生活的一部分,尤其是在我的工作中,创作是不可或缺的,创作都是核心能力之一。…

【RabbitMQ重试】重试三次转入死信队列

以下是基于RabbitMQ死信队列实现消息重试三次后转存的技术方案&#xff1a; 方案设计要点 队列定义改造&#xff08;核心参数配置&#xff09; Bean public Queue auditQueue() {Map<String, Object> args new HashMap<>();args.put("x-dead-letter-exchan…

软件工程-软件需求分析基础

基本任务 准确地回答“系统必须做什么&#xff1f;”&#xff0c;也就是对目标系统提出完整、准确、清晰、具体的要求 目标是&#xff0c;在分析阶段结束之前&#xff0c;系统分析员应该写出软件需求规格说明书&#xff0c;以书面形式准确地描述软件需求。 准则 1&#xff…

2025.2.9 每日学习记录2:技术报告写了一半+一点点读后感

0.近期主任务线 1.完成小论文准备 目标是3月份完成实验点1的全部实验和论文。 2.准备教资笔试 打算留个十多天左右&#xff0c;一次性备考笔试的三个科目 1.实习申请技术准备&#xff1a;微调、Agent、RAG 1.今日完成任务 1.电子斗蛐蛐&#xff08;文本书写领域&am…

9 Pydantic复杂数据结构的处理

在构建现代 Web 应用时&#xff0c;我们往往需要处理复杂的输入和输出数据结构。例如&#xff0c;响应数据可能包含嵌套字典、列表、元组&#xff0c;甚至是多个嵌套对象。Pydantic 是一个强大的数据验证和序列化库&#xff0c;可以帮助我们轻松地处理这些复杂的数据结构&#…

链表(LinkedList) 1

上期内容我们讲述了顺序表&#xff0c;知道了顺序表的底层是一段连续的空间进行存储(数组)&#xff0c;在插入元素或者删除元素需要将顺序表中的元素整体移动&#xff0c;时间复杂度是O(n)&#xff0c;效率比较低。因此&#xff0c;在Java的集合结构中又引入了链表来解决这一问…

【C#】任务调度的实现原理与组件应用Quartz.Net

Quartz 是一个流行的开源作业调度库&#xff0c;最初由 Terracotta 开发&#xff0c;现在由 Terracotta 的一部分 Oracle 所有。它主要用于在 Java 应用程序中调度作业的执行。Quartz 使用了一种复杂的底层算法来管理任务调度&#xff0c;其中包括任务触发、执行、持久化以及集…

torch_bmm验算及代码测试

文章目录 1. torch_bmm2. pytorch源码 1. torch_bmm torch.bmm的作用是基于batch_size的矩阵乘法,torch.bmm的作用是对应batch位置的矩阵相乘&#xff0c;比如&#xff0c; mat1的第1个位置和mat2的第1个位置进行矩阵相乘得到mat3的第1个位置mat1的第2个位置和mat2的第2个位置…

shell+kafka实现服务器健康数据搜集

今天有一个徒弟问我&#xff0c;分发、代理服务器都装有kafka&#xff0c;如何快速收集服务器的健康数据&#xff0c;每10秒就收集一次&#xff1f; 我当时听完之后&#xff0c;楞了一下&#xff0c;然后说出了我的见解&#xff1a;认为最快速的方法无法就是建议shell脚本直接采…

web前端布局--使用element中的Container布局容器

前端页面&#xff0c;跟Qt中一样&#xff0c;都是有布局设置的。 先布局&#xff0c;然后再在各布局中添加显示的内容。 Element网站布局容器&#xff1a;https://element.eleme.cn/#/zh-CN/componet/container 1.将element相应的布局容器代码layout&#xff0c;粘贴到vue项…

vcredist_x64.exe 是 Microsoft Visual C++ Redistributable 的 64 位版本

vcredist_x64.exe 是 Microsoft Visual C++ Redistributable 的 64 位版本,它提供了运行基于 Visual C++ 编写的应用程序所需的库文件。许多 Windows 应用程序都依赖这些库来正常运行,特别是使用 Visual Studio 编译的程序。 用途和重要性: 运行时库:vcredist_x64.exe 安装…

一个简单的Windows TCP服务器实现

初始化 WSADATA wsaData; SOCKET serverSocket, clientSocket; struct sockaddr_in serverAddr { 0x00 }; struct sockaddr_in clientAddr { 0x00 }; int clientAddrLen sizeof(clientAddr);if (WSAStartup(MAKEWORD(2, 2), &wsaData) ! 0) {printf("WSAStartup f…

AF3 drmsd函数解读

drmsd(distance Root Mean Square Deviation,距离均方根偏差)函数在AlphaFold3的 src.utils.validation_metrics模块中定义,用于计算两个蛋白质结构(或其他分子结构)之间的距离偏差。它衡量了两个结构的 成对原子间距离 差异,而不是直接比较原子坐标。这种度量方式比 RM…

macbook2015升级最新MacOS 白苹果变黑苹果

原帖&#xff1a;https://www.bilibili.com/video/BV13V411c7xz/MAC OS系统发布了最新的Sonoma&#xff0c;超酷的动效锁屏壁纸&#xff0c;多样性的桌面小组件&#xff0c;但是也阉割了很多老款机型的升级权利&#xff0c;所以我们可以逆向操作&#xff0c;依旧把老款MAC设备强…

建筑物损坏程度分割数据集labelme格式2816张5类别

数据集格式&#xff1a;labelme格式(不包含mask文件&#xff0c;仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数)&#xff1a;2816 标注数量(json文件个数)&#xff1a;2816 标注类别数&#xff1a;5 标注类别名称:["minor-damage","destroyed&quo…

ReactNative进阶(五十九):存量 react-native 项目适配 HarmonyOS NEXT

文章目录 一、前言二、ohos_react_native2.1 Fabric2.2 TurboModule2.2.1 ArkTSTurboModule2.2.2 cxxTurboModule&#xff1a; 三、拓展阅读 一、前言 2024年10月22日19:00&#xff0c;华为在深圳举办“原生鸿蒙之夜暨华为全场景新品发布会”&#xff0c;主题为“星河璀璨&…

Golang GORM系列:GORM CRUM操作实战

在数据库管理中&#xff0c;CRUD操作是应用程序的主干&#xff0c;支持数据的创建、检索、更新和删除。强大的Go对象关系映射库GORM通过抽象SQL语句的复杂性&#xff0c;使这些操作变得轻而易举。本文是掌握使用GORM进行CRUD操作的全面指南&#xff0c;提供了在Go应用程序中有效…

k8s部署elasticsearch

前置环境:已部署k8s集群,ip地址为 192.168.10.1~192.168.10.5,总共5台机器。 1. 创建provisioner制备器(如果已存在,则不需要) 制备器的具体部署方式,参考我之前的文章:k8s部署rabbitmq-CSDN博客 2. 编写wms-elk-data-sc.yaml配置文件 apiVersion: storage.k8s.io/…

【Windows】PowerShell 缓存区大小调节

PowerShell 缓存区大小调节 方式1 打开powershell 窗口属性调节方式2&#xff0c;修改 PowerShell 配置文件 方式1 打开powershell 窗口属性调节 打开 CMD&#xff08;按 Win R&#xff0c;输入 cmd&#xff09;。右键标题栏 → 选择 属性&#xff08;Properties&#xff09;…

Json-RPC框架项目(一)

目录 1. 项目介绍: 2. 技术选择; 3. 第三方库介绍; 4. 项目功能; 5. 模块功能; 6. 项目实现: 1. 项目介绍: RPC是远程过程调用, 像调用本地接口一样调用远程接口, 进行完成业务处理, 计算任务等, 一个完整的RPC包括: 序列化协议, 通信协议, 连接复用, 服务注册, 服务发…