R语言学习笔记之高效数据操作

一、概要

数据操作是R语言的一大优势,用户可以利用基本包或者拓展包在R语言中进行复杂的数据操作,包括排序、更新、分组汇总等。R数据操作包:data.tabletidyfst两个扩展包。

data.table是当前R中处理数据最快的工具,可以实现快速的数据汇总、连接、删除、分组计算等操作,具有稳定、速度快、省内存、特性丰富、语法简洁等特点。由于其函数语法结构相对来说较为抽象,对于初学者而言往往需要花更多的时间来掌握。

tidyfst包应运而生,用以提高data.table代码的可读性和可维护性。tidyfst包参考了tidyverse体系的语法结构,让用户能够见名知义;同时,其底层由data.table代码构成,因此实现速度非常快。对于较为复杂的data.table操作,tidyfst包提供了简便的调用函数进行实现。

资料来源:《机器学习全解(R语言版)》 黄天元  2024年7月出版

二、数据读写

在data.table包中可以使用freadfwrite函数对csv格式的文件进行读写。

如果需要保存规模较大的数据,可以使用tidyfst包的import_fstexport_fst函数来进行数据读写,其数据保存格式为以fst为扩展名的二进制文件。它的特点就是数据高保真读写速度快压缩效果好,因此保存下来的fst文件往往要比csv格式占用内存更小

library(pacman)
p_load(tidyfst,data.table)fwrite(iris,"D:/iris.csv")
ir=fread("D:/iris.csv")export_fst(iris,"D:/iris.fst")
ir=import_fst("D:/iris.fst")

三、筛选列

1、选择需要的列

library(pacman)
p_load(tidyfst,data.table)
ir=as.data.table(iris)
ir# 选取上面构造的数据框ir中的第1、3和4列,以下两种写法等价
ir %>% select_dt(1,3,4)    #tidyfst
ir[,c(1,3,4)]    # data.table

2、选择连续的列

可以使用“:”符号:

# 选择1到3列
ir %>% select_dt(1:3) 
ir[,1:3]

 3、根据变量名称选择单列

# 选择Sepal.Length列
ir %>% select_dt(Sepal.Length)
ir[,"Sepal.Length"]

4、根据变量名称选择多列

变量名称之间需要用逗号隔开 

# 选择Sepal.Length和Petal.Length两列
ir %>% select_dt(Sepal.Length,Petal.Length)
ir[,c("Sepal.Length","Petal.Length")]

5、根据正则表达式筛选列

# 选择列名称包含“Sepal”的列
ir %>% select_dt("Sepal")
ir[,.SD,.SDcols=patterns("Sepal")]

 

6、利用特殊函数选择列

# 选择数据类型为因子的列
ir %>% select_dt(is.factor)
ir[,.SD,.SDcols = is.factor]

7、排除列

排除一些列,则可以在原来基础上加上减号来实现:

# 排除Sepal.Length和Petal.Length这两列
ir %>% select_dt(-Sepal.Length,-Petal.Length)
ir[,-c("Sepal.Length","Petal.Length")]

# 排除因子列
ir %>% select_dt(-is.factor)
ir[,.SD,.SDcols = -is.factor]

四、筛选行

1、根据单个条件筛选行

# 筛选出Sepal.Length大于7的条目
ir %>% filter_dt(Sepal.Length>7)
ir[Sepal.Length>7]

2、多条件筛选行

如果要附加多个条件,那么条件之间可以利用逻辑运算符&(与)​、|(或)和!(非)进行修饰和连接。

# 筛选Species列不为versicolor且Sepal.Length大于6的条目
ir %>% filter_dt(Species != "versicolor" & Sepal.Length > 6)
ir[Species != "versicolor" & Sepal.Length > 6]

3、tidyfst包中现成的筛选函数

slice_max_dt

获得Sepal.Length最大的10个条目

ir %>% slice_max_dt(Sepal.Length,10)

slice_min_dt

获得Sepal.Length最小的10个条目

ir %>% slice_min_dt(Sepal.Length,10)

slice_sample_dt

随机选择10个条目

ir %>% slice_sample_dt(10)

slice_dt

根据条目的位置来进行筛选。获得ir数据框的第100行

ir %>% slice_dt(100)ir[100]

选择多行,则可以使用数值向量。选出第100行到第105行

ir %>% slice_dt(100:105)ir[100:105]
unique

去重

ir %>% unique()

 

 

五、更新

更新是指对数据框的一列或多列进行修饰,或根据已有列构造新列。

mutate_dt新增常数列、修改列
mutate_when按照一定的条件进行列的更新
mutate_vars对多个列同时进行原位修饰
ir %>% mutate_dt(one=1)
ir %>% mutate_dt(Sepal.Length=Sepal.Length+1)
ir %>% mutate_when(Sepal.Width=0.2,one=1)
ir %>% mutate_vars("^Petal",function(x) x-1)

1、新增一列名为one的常数列,其所有数值均为1

2、让Sepal.Length列的所有数值加1

3、在Petal.Width等于0.2的时候新增名为one的常数列

4、让列名称以Petal开头的列都减去1

六、排序

对数据框进行排序有两种方法,一种是按照行进行排序,另一种是按照列进行排序。

arrange_dt按列排序
relocate_dt调整列的位置
ir %>% arrange_dt(Sepal.Length)
ir[order(Sepal.Length)]ir %>% arrange_dt(Sepal.Length,Sepal.Width)
ir[order(Sepal.Length,Sepal.Width)]ir %>% arrange_dt(-Sepal.Length)
ir[order(-Sepal.Length)]ir %>% relocate_dt(Species,how="first")
ir %>% relocate_dt(Species,how="last")ir %>% relocate_dt(Petal.Length,how = "after",where = Petal.Width)# 对列的位置进行重新排列
new_order=names(ir)[c(3,2,4,5,1)]
new_order
ir[,.SD,.SDcols = new_order]# 直接写上列名称
ir %>% select_mix(Petal.Length,Sepal.Width,Petal.Width,Species,Sepal.Length)

1、按照Sepal.Length列从小到大进行排列

多列:先按照Sepal.Length列进行排列,然后再按照Sepal.Width列进行排列

2、从大到小进行排列,在原来的变量之前加入负号

3、调整列的位置

把Species列放到第一列:

把Sepal.Length列放到最后一列:

七、汇总

汇总的过程是用较少信息表征较多信息的方法。

tidyfst包中使用summarise_dt函数来对数据框中的列进行汇总。

ir %>% summarise_dt(avg=mean(Sepal.Length))
ir %>% summarise_dt(mean=mean(Sepal.Length))
ir %>% summarise_when(Petal.Width==.2,avg=mean(Petal.Length))
ir %>% summarise_vars(2:4,sum)
ir %>% summarise_vars(is.numeric,sum)

八、分组计算

分组计算就是根据分组结果来对每一个组进行相同的操作。

在tidyfst包中,很多函数都具有by参数,by用来指定分组的变量。

如果需要对多个变量进行分组,那么by参数的指定方式有以下几种:

●在by参数中放入字符串,变量之间以逗号分隔(如by="vs,am")​;

●在by参数中放入字符向量,字符是分组的列名称(如by=c("vs","am"))​;

●在by参数中放入一个指定分组变量的列表(如by=list(vs,am))​。

ir %>% summarise_dt(avg=mean(Sepal.Length),by=Species)
ir %>% summarise_vars(is.numeric,sum,by=Species)mt=as_dt(mtcars)
mt
mt %>% summarise_dt(avg=mean(mpg),by="vs,am")
mt %>% summarise_dt(avg=mean(mpg),by=c("vs","am"))
mt %>% summarise_dt(avg=mean(mpg),by=list(vs,am))
mt %>% summarise_dt(avg=mean(mpg),by=.(vs,am))

九、列的重命名

tidyfst包中使用rename_dt函数来对列进行重命名。对多个列进行重命名,只要用逗号隔开即可。

ir %>% rename_dt(sl=Sepal.Length)
ir %>% rename_dt(sl=Sepal.Length,sw=Sepal.Width)
ir %>% rename_with_dt(toupper)
ir %>% setNames(paste0("V",1:5))

十、多表连接

连接是指根据表格所包含的共同信息来对多个表格进行合并的过程。基本的连接可以分为内连接、全连接、左连接和右连接

内连接又称为自然连接,该操作会从结果表中删除与其他被连接表中没有匹配行的所有行,只保留两个表格中都包含的数据条目。

全连接会保留所有表格的所有信息。

左连接则仅会保证左边(即第一个出现的)表格的信息会被完全保留,右边(第二个)表格的信息只有与第一个表格的信息匹配的才能够保留。

右连接是左连接的逆运算,即完全保留第二个表格的信息,而第一个表格中只有与第二个表格的信息匹配的内容才能保留。

还有一种特殊的连接方式叫作过滤型连接,它包括反连接半连接

半连接与左连接相似,但是它只保留了左表格的所有列,而右表格的列则不会放入结果。这相当于只提取了右表格的匹配列,然后与左表格进行连接。

反连接则与半连接相反,它会保留左表和右表对应列相异的部分。

workers=fread("name companyNick AcmeJohn AjaxDaniela Ajax")positions=fread("name positionJohn designerDaniela engineerCathie manager")workers
positionsworkers %>% inner_join_dt(positions)
workers %>% merge(positions)workers %>% full_join_dt(positions)
workers %>% merge(positions,all = T)workers %>% left_join_dt(positions)
workers %>% merge(positions,all.x = T)workers %>% right_join_dt(positions)
workers %>% merge(positions,all.y = T)workers %>% left_join_dt(positions,by="name")
workers %>% merge(positions,all.x = T,by="name")positions2=setNames(positions,c("worker","position"))
workers
positions2
workers %>% inner_join_dt(positions2,by=c("name"="worker"))
workers %>% inner_join_dt(positions2,on="name==worker")
workers %>% merge(positions2,by.x="name",by.y = "worker")workers %>% semi_join_dt(positions)
workers %>% anti_join_dt(positions)

 

十一、长宽转换

tidyfst包中的longer_dt函数实现将“宽数据”转换成“长数据”。

tidyfst包中的wider_dt函数实现“长数据”转成“宽数据”。

stocks=data.frame(time=as.Date('2009-01-01')+0:9,X=rnorm(10,0,1),Y=rnorm(10,0,2),Z=rnorm(10,0,4)
)
stocks# 转成长数据
stocks %>% longer_dt(time) -> long_stocks
long_stocksstocks %>% longer_dt(time,name="NAME",value="VALUE")# 转成宽数据
wide_stockes=long_stocks %>% wider_dt(name="name",value="value")
wide_stockes

 

十二、集合运算

tidyfst包函数data.table包函数
交集intersect_dtfintersect
并集union_dtfunion
差集setdiff_dtfsetdiff

注意:tidyfst包会自动地把任意数据框转化为data.table格式。 

十三、缺失值处理

1、删除缺失记录

na.omit函数可以删掉任意包含缺失值的行。

tidyfst包的drop_na_dt函数可以实现删除某一列中存在缺失值的条目。

2、缺失值填充

tidyfst包中的replace_na_dt函数实现填充指定的值。

tidyfst包的fill_na_dt函数实现将上一个观测值作为下面缺失的填充值。

tidyfst包中的impute_dt函数实现使用非缺失数值的均值、中位数或众数来对缺失值进行填充。

十四、列表列的应用

列表列(list column)是R语言中相对较新的一个概念,它能够根据分组把一整块数据集成在一起成为一列,而这个列的数据类型为列表(list)。在tidyfst包中可以使用nest_dt函数进行实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/68390.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

本地大模型编程实战(04)给文本自动打标签

文章目录 准备实例化本地大模型情感分析更精细的控制总结代码 使用本地大模型可以根据需要给文本打标签,本文介绍了如何基于 langchain 和本地部署的大模型给文本打标签。 本文使用 llama3.1 作为本地大模型,它的性能比非开源大模型要查一下,…

视频外绘技术总结:Be-Your-Outpainter、Follow-Your-Canvas、M3DDM

Diffusion Models专栏文章汇总:入门与实战 前言:视频Inpaint的技术很火,但是OutPaint却热度不高,这篇博客总结比较经典的几篇视频Outpaint技术。其实Outpaint在runway等工具上很火,可是学术界对此关注比较少,博主从这三年的顶会中找到了最具代表性的三篇论文解读。 目录 …

Java对象注入的常见方式

在 Java 中,对象注入(依赖注入,Dependency Injection)是实现松耦合设计的重要方式,常见的有以下几种实现形式: 1. 构造器注入(Constructor Injection) 通过类的构造函数注入依赖对象…

【数据结构】 并查集 + 路径压缩与按秩合并 python

目录 前言模板朴素实现路径压缩按秩合并按树高为秩按节点数为秩 总结 前言 并查集的基本实现通常使用森林来表示不同的集合,每个集合用一棵树表示,树的每个节点有一个指向其父节点的指针。 如果一个节点是它自己的父节点,那么它就是该集合的代…

低代码系统-产品架构案例介绍、得帆云(八)

产品名称 得帆云DeCode低代码平台-私有化 得帆云DeMDM主数据管理平台 得帆云DeCode低代码平台-公有云 得帆云DePortal企业门户 得帆云DeFusion融合集成平台 得帆云DeHoop数据中台 名词 概念 云原生 指自己搭建的运维平台,区别于阿里云、腾讯云 Dehoop 指…

.NET 8 项目 Docker 方式部署到 Linux 系统详细操作步骤

本文将详细介绍如何将一个 .NET 8 项目通过 Docker 部署到 Linux 系统中。以下步骤包括从项目的创建、Dockerfile 的编写、镜像构建、到最后在 Linux 上的容器运行。 1. 环境准备 在开始之前,请确保你已经具备以下环境: Linux 系统(如 Ubu…

【PyTorch】5.张量索引操作

目录 1. 简单行、列索引 2. 列表索引 3. 范围索引 4. 布尔索引 5. 多维索引 个人主页:Icomi 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为…

springboot 动态线程池

在Spring Boot中,可以使用ThreadPoolTaskExecutor类来创建动态线程池。以下是一个示例: 首先,需要在配置文件中配置线程池的属性,例如最小线程数、最大线程数、线程存活时间等。可以在application.properties或application.yml中…

强化学习 - 基于策略搜索和策略优化: 高斯策略

最近在做毕设需要用强化学习来做控制,对强化学习的知识点做一下总结。 高斯策略 高斯策略属于强化学习中的基于策略优化的分支(Policy Optimization),尤其是策略梯度方法(Policy Gradient Methods) 的一部…

基于微信小程序高校课堂教学管理系统 课堂管理系统微信小程序(源码+文档)

目录 一.研究目的 二.需求分析 三.数据库设计 四.系统页面展示 五.免费源码获取 一.研究目的 困扰管理层的许多问题当中,高校课堂教学管理也是不敢忽视的一块。但是管理好高校课堂教学又面临很多麻烦需要解决,如何在工作琐碎,记录繁多的情况下将高校课堂教学的当前情况反…

论文阅读笔记:VMamba: Visual State Space Model

论文阅读笔记:VMamba: Visual State Space Model 1 背景2 创新点3 方法4 模块4.1 2D选择性扫描模块(SS2D)4.2 加速VMamba 5 效果5.1 和SOTA方法对比5.2 SS2D和自注意力5.3 有效感受野5.4 扫描模式 论文:https://arxiv.org/pdf/240…

【文星索引】搜索引擎项目测试报告

目录 一、项目背景二、 项目功能2.1 数据收集与索引2.2 API搜索功能2.3 用户体验与界面设计2.4 性能优化与维护 三、测试报告3.1 功能测试3.2 界面测试3.3 性能测试3.4 兼容性测试3.5 自动化测试 四、测试总结4.1 功能测试方面4.2 性能测试方面4.3 用户界面测试方面 一、项目背…

DBO-高斯回归预测matlab

蜣螂优化算法(Dung Beetle Optimizer, DBO)是一种新型的群智能优化算法,在2022年底提出,主要是受蜣螂的的滚球、跳舞、觅食、偷窃和繁殖行为的启发。 本次研究使用的是 Excel 格式的股票预测数据。数据集按照 8:1:1 的比例&#x…

MySQL篇之对MySQL进行参数优化,提高MySQL性能

1. MySQL参数优化说明 MySQL 参数调优是提高数据库性能的重要手段之一。通过调整 MySQL 的配置参数,可以优化查询速度、提升并发处理能力、减少资源消耗等。 MySQL 的性能优化涉及到多个方面,包括内存管理、磁盘 I/O、查询优化、连接管理、复制配置等。…

8621 二分查找

SCAU数据结构OJ第五章 文章目录 8621 二分查找 8621 二分查找 Description 编写Search_Bin函数,实现在一个递增有序数组ST中采用折半查找法确定元素位置的算法. 输入格式 第一行: 元素个数n 第二行:依次输入n个元素的值(有序) 第…

差分等长的原理

差分等长是指在设计差分信号传输线路时,保证两条差分线的长度尽量一致,长度之差在一个合理的范围内。这是为了确保两个差分信号时刻保持相反极性,减少共模分量,从而提高信号传输的质量。 在差分信号传输中,两条差分线…

Autogen_core: Reflection

目录 代码代码逻辑解释:数据类定义:CoderAgent 类:ReviewerAgent 类:主程序: 完成的功能: 代码 from dataclasses import dataclassdataclass class CodeWritingTask:task: strdataclass class CodeWritin…

我们需要有哪些知识体系,知识体系里面要有什么哪些内容?

01、管理知识体系的学习知识体系 主要内容: 1、知识管理框架的外部借鉴、和自身知识体系的搭建; 2、学习能力、思维逻辑能力等的塑造; 3、知识管理工具的使用; 4、学习资料的导入和查找资料的渠道; 5、深层关键的…

java后端之事务管理

Transactional注解:作用于业务层的方法、类、接口上,将当前方法交给spring进行事务管理,执行前开启事务,成功执行则提交事务,执行异常回滚事务 spring事务管理日志: 默认情况下,只有出现Runti…

Sora学习

openai 12天的发布会 remix:对视频处理 可以改变视频的元素和内容,打开一扇门的例子(打开门是太空,打开门是丛林) recut:重新生成或者重新剪辑,给一个视频前后做扩展 storyboard:可以对每一帧进行剪辑和生成新的 …