全程Kali linux---CTFshow misc入门

图片篇(基础操作)

第一题:

 

ctfshow{22f1fb91fc4169f1c9411ce632a0ed8d}

第二题

解压完成后看到PNG,可以知道这是一张图片,使用mv命令或者直接右键重命名,修改扩展名为“PNG”即可得到flag。

ctfshow{6f66202f21ad22a2a19520cdd3f69e7b}

第三题:

安装libbpg后使用命令将格式转换一下,就可以得到flag了。

ctfshow{aade771916df7cde3009c0e631f9910d}

第四题:

双击打开后可以看到,它们实际上的格式不是txt,我们把后缀一一修改,就可以得到flag了,部分格式我们无法查看,可以下载一些相关的查看软件。

sudo apt-get install gimp

sudo apt-get install eog

ctfshow{4314e2b15ad9a960e7d9d8fc2ff902da}

图片篇(信息附加)

第五题:

解压出来后,图片表面没有我们想要的东西,用010 Editor打开看一下,在屏幕的下半部分我看到了“ how{ ”这可能是ctfshow开头的一部分,下拉到末尾,看到了flag。

ctfshow{2a476b4011805f1a8e4b906c8f84083e}

第六题:

放入010 editor中,在ctrl+F搜索ctf,找到flag,如果搜索时报错,记得把类型修改成text

ctfshow{d5e937aefb091d38e70d927b80e1e2ea}

第七题:

与第六题相同的方法。

ctfshow{c5e77c9c289275e3f307362e1ed86bb7}

第八题:

老样子,先用010 editor看一下,开头有个png标识,在最后一个块的开头也有一个png标识,这可能是两张图片叠在了一起,我们使用foremost命令分离图片,成功得到了flag。

ctfshow{1df0a9a3f709a2605803664b55783687}

第九题:

也是非常简单的,直接搜索就可以找到。

ctfshow{5c5e819508a3ab1fd823f11e83e93c75}

第十题:

用010 editor啥都没找到,那就用binwalk看一下,发现了藏有zip压缩包,我们直接添加-e参数进行提取,在10ES中找到了flag。

ctfshow{353252424ac69cb64f643768851ac790}

第十一题:

我们直接删除第一个IDAT,保存后去查看图片,发现图片发生了变化,得到了flag。

注:出题者可能利用这种图像显示变化来隐藏关键信息。删除第一个 IDAT 块后显示出的新图像可能包含解题所需的线索,比如隐藏的文字、图案或二维码等。

第十二题:

我们使用zsteg命令,查看图片得知有7870个额外的字节数据,使用“ -E ”参数可以把指定类的额外数据全部提取出来,但是我们并没有在提取出的数据中得到flag,所以现在怀疑这是多余的数据,影响了图片的正常显示,所以我们尝试删除这些IDTA。

进入到010 editor中,上面的图是块头的标识,下面的图是块尾部的标识,我们根据标识,每删除一个块,就进行保存并查看图片,直到删除所有额外数据,我们在删完第八个块时,图片上显示出来了fiag。

除了使用ctrl+f2手动标记外,还可以筛选查找00 00 01,因为每个块开头都是这样的,有个突出显示就很好区分了。

ctfshow{10ea26425dd4708f7da7a13c8e256a73}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/68345.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于SMPL的三维人体重建-深度学习经典方法之VIBE

本文以开源项目VIBE[1-2]为例,介绍下采用深度学习和SMPL模板的从图片进行三维人体重建算法的整体流程。如有错误,欢迎评论指正。 一.算法流程 包含生成器模块和判别器模块,核心贡献就在于引入了GRU模块,使得当前帧包含了先前帧的先…

深入浅出Linux操作系统大数据定制Shell编程(六)

深入浅出Linux操作系统大数据定制Shell编 1、大数据定制-Shell编程1.1、什么是Shell1.2、Shell脚本执行方式 2、Shell变量2.1、shell变量的定义2.1.1、设置环境变量2.1.2、多行注释 2.2、位置参数变量2.2.1、语法 2.3、预定义变量2.4、运算符2.4.1、条件判断2.4.2、case语句2.4…

SQL-leetcode—1174. 即时食物配送 II

1174. 即时食物配送 II 配送表: Delivery ------------------------------------ | Column Name | Type | ------------------------------------ | delivery_id | int | | customer_id | int | | order_date | date | | customer_pref_delivery_date | date | -------------…

C#AWS signatureV4对接Amazon接口

马上要放假了,需要抓紧时间测试对接一个三方接口,对方是使用Amazon服务的,国内不多见,能查的资(代)料(码),时间紧比较紧,也没有时间去啃Amazon的文档,主要我的英文水平也不行,于是粗…

30289_SC65XX功能机MMI开发笔记(ums9117)

建立窗口步骤: 引入图片资源 放入图片 然后跑make pprj new job8 可能会有bug,宏定义 还会有开关灯报错,看命令行注释掉 接着把ture改成false 然后命令行new一遍,编译一遍没报错后 把编译器的win文件删掉, 再跑一遍虚拟机命令行…

“““【运用 R 语言里的“predict”函数针对 Cox 模型展开新数据的预测以及推理。】“““

主题与背景 本文主要介绍了如何在R语言中使用predict函数对已拟合的Cox比例风险模型进行新数据的预测和推理。Cox模型是一种常用的生存分析方法,用于评估多个因素对事件发生时间的影响。文章通过具体的代码示例展示了如何使用predict函数的不同参数来获取生存概率和…

Effective Objective-C 2.0 读书笔记—— objc_msgSend

Effective Objective-C 2.0 读书笔记—— objc_msgSend 文章目录 Effective Objective-C 2.0 读书笔记—— objc_msgSend引入——静态绑定和动态绑定OC之中动态绑定的实现方法签名方法列表 其他方法objc_msgSend_stretobjc_msgSend_fpretobjc_msgSendSuper 尾调用优化总结参考文…

验证二叉搜索树(力扣98)

根据二叉搜索树的特性,我们使用中序遍历,保证节点按从小到大的顺序遍历。既然要验证,就是看在中序遍历的条件下,各个节点的大小关系是否符合二叉搜索树的特性。双指针法和适合解决这个问题,一个指针指向当前节点&#…

【竞技宝】LPL:IG3-1击败RNG

北京时间1月26日,英雄联盟LPL2025正在如火如荼的进行之中,昨日共进行两场比赛。第二场比赛由RNG对阵IG。本场比赛,RNG在首局前期打出完美节奏后一直压制着IG拿下比赛,但此后的三局,IG发挥出自己擅长大乱斗的能力在团战…

web3py+flask+ganache的智能合约教育平台

最近在学习web3的接口文档,使用web3pyflaskganache写了一个简易的智能合约教育平台,语言用的是python,ganche直接使用的本地区块链网络,用web3py进行交互。 代码逻辑不难,可以私信或者到我的闲鱼号夏沫mds获取我的代码…

使用 Docker 运行 Oracle Database 23ai Free 容器镜像并配置密码与数据持久化

使用 Docker 运行 Oracle Database 23ai Free 容器镜像并配置密码与数据持久化 前言环境准备运行 Oracle Database 23ai Free 容器基本命令参数说明示例 注意事项高级配置参数说明 总结 前言 Oracle Database 23ai Free 是 Oracle 提供的免费版数据库,基于 Oracle …

JAVA(SpringBoot)集成Kafka实现消息发送和接收。

SpringBoot集成Kafka实现消息发送和接收。 一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者 君子之学贵一,一则明,明则有功。 一、Kafka 简介 Kafka 是由 Apache 软件基金会开发的一个开源流处理平台,最初由 Link…

Spring Boot 无缝集成SpringAI的函数调用模块

这是一个 完整的 Spring AI 函数调用实例&#xff0c;涵盖从函数定义、注册到实际调用的全流程&#xff0c;以「天气查询」功能为例&#xff0c;结合代码详细说明&#xff1a; 1. 环境准备 1.1 添加依赖 <!-- Spring AI OpenAI --> <dependency><groupId>o…

媒体新闻发稿要求有哪些?什么类型的稿件更好通过?

为了保证推送信息的内容质量&#xff0c;大型新闻媒体的审稿要求一向较为严格。尤其在商业推广的过程中&#xff0c;不少企业的宣传稿很难发布在这些大型新闻媒体平台上。 媒体新闻发稿要求有哪些&#xff1f;就让我们来了解下哪几类稿件更容易过审。 一、媒体新闻发稿要求有哪…

ui-automator定位官网文档下载及使用

一、ui-automator定位官网文档简介及下载 AndroidUiAutomator&#xff1a;移动端特有的定位方式&#xff0c;uiautomator是java实现的&#xff0c;定位类型必须写成java类型 官方地址&#xff1a;https://developer.android.com/training/testing/ui-automator.html#ui-autom…

ThreadLocal概述、解决SimpleDateFormat出现的异常、内存泄漏、弱引用、remove方法

①. ThreadLocal简介 ①. ThreadLocal是什么 ①. ThreadLocal本地线程变量,线程自带的变量副本(实现了每一个线程副本都有一个专属的本地变量,主要解决的就是让每一个线程绑定自己的值,自己用自己的,不跟别人争抢。通过使用get()和set()方法,获取默认值或将其值更改为当前线程…

总结8..

#include <stdio.h> // 定义结构体表示二叉树节点&#xff0c;包含左右子节点编号 struct node { int l; int r; } tree[100000]; // 全局变量记录二叉树最大深度&#xff0c;初始为0 int ans 0; // 深度优先搜索函数 // pos: 当前节点在数组中的位置&#xff0c…

科普篇 | “机架、塔式、刀片”三类服务器对比

一、引言 在互联网的世界里&#xff0c;服务器就像是默默运转的超级大脑&#xff0c;支撑着我们日常使用的各种网络服务。今天&#xff0c;咱们来聊聊服务器家族中的三位 “明星成员”&#xff1a;机架式服务器、塔式服务器和刀片式服务器。如果把互联网比作一座庞大的城市&…

动手学图神经网络(2):跆拳道俱乐部案例实战

动手学图神经网络(2):跆拳道俱乐部案例实战 在深度学习领域,图神经网络(GNNs)能将传统深度学习概念推广到不规则的图结构数据,使神经网络能够处理对象及其关系。将基于 PyTorch Geometric 库,一步步探索图神经网络的奥秘。 安装必要的包 首先, 安装所需的 Python 包…

【vue3组件】【大文件上传】【断点续传】支持文件分块上传,能够在上传过程中暂停、继续上传的组件

一、概述 本示例实现了一个基于 Vue3 和 TypeScript 的断点上传功能。该功能支持文件分块上传&#xff0c;能够在上传过程中暂停、继续上传&#xff0c;并且支持检测已经上传的分块&#xff0c;避免重复上传&#xff0c;提升上传效率。以下是关键的技术点与实现流程&#xff1…