【线性代数的本质】矩阵与线性变换

线性变化要满足两点性质:

  1. 直线(连续的点)在变换后还是直线。
  2. 原点不变。

假设有坐标轴(基底) i ^ \widehat{i} i j ^ \widehat{j} j
i ^ = [ 1 0 ] , j ^ = [ 0 1 ] \widehat{i}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \widehat{j}=\begin{bmatrix} 0 \\ 1 \end{bmatrix} i =[10],j =[01]

若向量 v ⃗ = [ − 1 2 ] \vec{v}=\begin{bmatrix} -1 \\ 2 \end{bmatrix} v =[12],则可以使用它们表示成:
v ⃗ = − 1 i ^ + 2 j ^ \vec{v}=-1\widehat{i}+2\widehat{j} v =1i +2j

请添加图片描述

当空间进行一次线性变换后, i ^ \widehat{i} i j ^ \widehat{j} j 都发生了变化,但 v ⃗ \vec{v} v 与它们的关系却保持不变。假设这些向量经过变换变成了:
T r a n ( i ^ ) = [ 1 − 2 ] , T r a n ( j ^ ) = [ 3 0 ] T r a n ( v ⃗ ) = [ 5 2 ] Tran(\widehat{i})=\begin{bmatrix} 1 \\ -2 \end{bmatrix}, Tran(\widehat{j})=\begin{bmatrix} 3 \\ 0 \end{bmatrix} \\ Tran(\vec{v})=\begin{bmatrix} 5 \\ 2 \end{bmatrix} Tran(i )=[12],Tran(j )=[30]Tran(v )=[52]

发现依然满足:
T r a n ( v ⃗ ) = − 1 T r a n ( i ^ ) + 2 T r a n ( j ^ ) = − 1 [ 1 − 2 ] + 2 [ 3 0 ] = [ − 1 ( 1 ) + 2 ( 3 ) − 1 ( − 2 ) + 2 ( 0 ) ] = [ 5 2 ] \begin{aligned} Tran(\vec{v})&= -1 Tran(\widehat{i})+2Tran(\widehat{j}) \\ &= -1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} -1(1) + 2(3) \\ -1(-2) + 2(0) \end{bmatrix} \\ &= \begin{bmatrix} 5 \\ 2 \end{bmatrix} \end{aligned} Tran(v )=1Tran(i )+2Tran(j )=1[12]+2[30]=[1(1)+2(3)1(2)+2(0)]=[52]

请添加图片描述

实际上,将两个基底在线性变换后变成的两个列向量合在一起,就是一个表示该线性变换的矩阵;对原向量左乘该矩阵,就能得到线性变换后的向量:

T r a n ( v ⃗ ) = M ∗ v ⃗ = [ 1 3 − 2 0 ] [ − 1 2 ] = − 1 [ 1 − 2 ] + 2 [ 3 0 ] = [ − 1 ( 1 ) + 2 ( 3 ) − 1 ( − 2 ) + 2 ( 0 ) ] = [ 5 2 ] \begin{aligned} Tran(\vec{v})&= M*\vec{v} \\ &= \begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \\ &= -1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} -1(1) + 2(3) \\ -1(-2) + 2(0) \end{bmatrix} \\ &= \begin{bmatrix} 5 \\ 2 \end{bmatrix} \end{aligned} Tran(v )=Mv =[1230][12]=1[12]+2[30]=[1(1)+2(3)1(2)+2(0)]=[52]
把数字换成符号,可以得到一个等式:

[ x i x j y i y j ] [ x y ] = x [ x i y i ] + y [ x j y j ] = [ x i ∗ x + x j ∗ y y i ∗ x + y j ∗ y ] \begin{bmatrix} x_i & x_j \\ y_i & y_j \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} x_i \\ y_i \end{bmatrix} + y \begin{bmatrix} x_j \\ y_j \end{bmatrix} = \begin{bmatrix} x_i * x + x_j * y \\ y_i * x + y_j * y \end{bmatrix} [xiyixjyj][xy]=x[xiyi]+y[xjyj]=[xix+xjyyix+yjy]


举个例子,如果要进行一次线性变换,使得二维空间被逆时针旋转90度,那么,可以知道:
T r a n ( i ^ ) = [ 0 1 ] , T r a n ( j ^ ) = [ − 1 0 ] Tran(\widehat{i})=\begin{bmatrix} 0 \\ 1 \end{bmatrix}, Tran(\widehat{j})=\begin{bmatrix} -1 \\ 0 \end{bmatrix} Tran(i )=[01],Tran(j )=[10]
于是可以直接写出线性变换对应的矩阵:
[ 0 − 1 1 0 ] \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} [0110]

将任意向量左乘该矩阵,就能使其旋转90度,如:
[ 0 − 1 1 0 ] [ − 1 2 ] = [ − 2 − 1 ] \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix} [0110][12]=[21]


用这个视角来看,一个原地不动的线性变换对应的矩阵自然就是单位矩阵,因为:
T r a n ( i ^ ) = [ 1 0 ] , T r a n ( j ^ ) = [ 0 1 ] Tran(\widehat{i})=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, Tran(\widehat{j})=\begin{bmatrix} 0 \\ 1 \end{bmatrix} Tran(i )=[10],Tran(j )=[01]

直接得到矩阵:
[ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [1001]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/41552.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

android Dialog沉浸式状态栏实现

在Android中,创建沉浸式状态栏通常意味着让状态栏背景与应用的主题颜色一致,并且让对话框在状态栏下面显示,而不是浮动。为了实现这一点,你可以使用以下代码片段: 首先,在你的Activity中设置状态栏为隐藏或…

SQL中字符串类型中char和varchar之间的区别是什么

在 MySQL 中,CHAR 和 VARCHAR 是两种常见的字符串数据类型,它们之间有以下主要区别: 存储方式 CHAR:固定长度存储。无论实际存储的字符数量多少,都会占用指定的固定字节数。VARCHAR:可变长度存储。只占用实…

《昇思25天学习打卡营第6天|网络构建》

文章目录 前言:今日所学:1. 定义模型类2. 模型层3. 模型参数 前言: 在第六节中我们学习了网络构建,了解了神经网络模型是由神经网络层和Tensor操作构成,我们使用的mindspore.nn中提供了常见的升级网络层的实现&#x…

在线图片转文字的软件,分享3种强大的软件!

在信息爆炸的时代,图片作为信息的重要载体之一,其内容往往蕴含着巨大的价值。然而,面对海量的图片信息,如何高效、准确地将其转化为文字,成为了许多人的迫切需求。今天,就为大家盘点几款功能强大的在线图片…

【python基础】—如何理解安装程序时要配置Widows和DOS操作系统中的path环境变量?

文章目录 前言一、环境变量是什么?二、为什么需要设置环境变量?三、配置anaconda的环境变量 前言 在安装一些程序的时候, 我们总是需要将安装路径配置到正在使用电脑的环境变量里。为什么要进行这一步呢?本文主要解释Widows和DOS…

特殊用途二极管+二极管故障检测+三极管(BJT)的工作原理+定时器的使用(小灯定时闪烁实现)

2024-7-5,星期五,17:27,天气:晴,心情:晴。今天没有什么特殊的事情发生,继续学习啦,加油加油!!! 今日完成模电自选教材第二章内容的学习&#xff…

1-4 NLP发展历史与我的工作感悟

1-4 NLP发展历史与我的工作感悟 主目录点这里 第一个重要节点:word2vec词嵌入 能够将无限的词句表示为有限的词向量空间,而且运算比较快,使得文本与文本间的运算有了可能。 第二个重要节点:Transformer和bert 为预训练语言模型发…

【ABB】原点设定

【ABB】原点设定 操作流程演示 操作流程 操作轴回原点编辑电机校准偏移更新转速计数器 1.首先得了解机器手的轴,这里以6轴作参考。 注意先回456轴,后回123轴。 2.然后需要了解机器人关节运动模式,即选择如下两个模式。 3.注意机器人各轴移动…

QT的编译过程(底层逻辑)

qmake -project 用于从源代码生成项目文件,qmake 用于从项目文件生成 Makefile,而 make 用于根据 Makefile 构建项目。 详细解释: qmake -project 这个命令用于从源代码目录生成一个初始的 Qt 项目文件(.pro 文件)。它…

奇异值分解求线性方程组的最小二乘解

线性方程组一般考虑两类: 非齐次线性方程组:Ax b齐次线性方程组:Ax 0 A 是 m * n 矩阵,x 是 n * 1 的向量,b 是 m * 1 的向量。此类问题可以很方便地采用SVD奇异值分解来求解。 一. 讨论基于线性代数的解析解 关…

吃顿饭的时间,用AI开发一个应用官网

最早接触开发时做的第一个项目就是企业官网,到后来自己开始走上独立开发者的道路时,哪怕是开发面向消费者的移动端产品,在产品上架时也需要提供应用官网。 感觉,编程这件事情和官网开发,紧密相连。 过往为了追求开发效…

个人微信 微信营销系统

个人微信 微信营销系统 CRM系统

Android TV跨平台开发心得

这半年来陆陆续续做了一堆poc,刚开始是flutter,结果领导叫停了,说有其他部门做一样的事,真不巧;后来是react native,开发了个demo,上报上去了已经;现在又要做android nativewebview …

Windows 玩转大模型第一天:大模型本地部署,调用大模型API可直接工程化应用(全部代码和详细部署流程)

Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。 以下是其主要特点和功能概述: 1. 简化部署:Ollama 目标在于简化在 Docker 容器中部署大型语言模型的过程,使得非专业用…

ELK日志系统和Filebeat采集器的学习总结

ELK是ElasticSerach、Logstash、Kina Logstash负责采集数据,Logstash有三个插件,input、filter、output,filter插件作用是对采集的数据进行处理,过滤的,因此filter插件可以选,可以不用配置。 ElasticSear…

vulnhub靶场之DC-1

1 信息收集 1.1 主机发现 arp-scan -l 主机ip地址为:192.168.1.4 1.2 端口服务扫描 nmap -sS -sV -A -T5 -p- 192.168.1.4 开发22,80,111端口 1.3 目录扫描 dirsearch -u 192.168.1.4 2 渗透测试 2.1 先访问一下80端口 发现是一个…

万和-集训刷题1

leetcode 2 两数之和 class Solution {public ListNode addTwoNumbers(ListNode l1, ListNode l2) {ListNode p1l1;ListNode p2l2;int next0;ListNode headnew ListNode(-1);ListNode tailhead;while (p1!null||p2!null){int n1p1!null?p1.val:0;int n2p2!null?p2.val:0;i…

K8S 部署 EFK

安装说明 系统版本为 Centos7.9 内核版本为 6.3.5-1.el7 K8S版本为 v1.26.14 ES官网 开始安装 本次安装使用官方ECK方式部署 EFK,部署的是当前的最新版本。 在 Kubernetes 集群中部署 ECK 安装自定义资源 如果能打开这个网址的话直接用这个命令安装,打不开的话…

半导体制造企业 文件共享存储应用

用户背景:半导体设备(上海)股份有限公司是一家以中国为基地、面向全球的微观加工高端设备公司,为集成电路和泛半导体行业提供具竞争力的高端设备和高质量的服务。 挑战:芯片的行业在国内迅猛发展,用户在上海…

SpringBoot:SpringBoot统一响应和统一异常处理

一、前言 在开发Spring Boot应用时,处理响应结果和异常的方式对项目的可维护性、可扩展性和团队协作有着至关重要的影响。分散的响应结果和异常处理逻辑往往会导致代码冗余、难以理解和维护。因此,统一结果返回和统一异常处理是提升项目质量的关键策略之…