第 6 次作业
习题 6.7
(a)
对 \(\psi(x_1-a,x_2-a)\) 在 \((0,0)\) 处进行泰勒展开:
\[\psi(x_1-a, x_2-a) = \sum_{n,m} \frac{1}{n!m!}(-a)^{n+m}\frac{d^n}{dx_1^n}\frac{d^m}{dx_2^m}\psi(x_1, x_2)
\]
\[= \sum_{m,n} \frac{1}{n!m!}(-a)^n\frac{d^n}{dx_1^n}(-\frac{ia}{\hbar}\hat{p_2})^m\psi(x_1, x_2)
\]
由于 \(\frac{d^n}{dx_1^n}\hat{p_2} = 0\), 上式变为:
\[\sum_{m,n} \frac{1}{n!m!}(-\frac{ia}{\hbar}\hat{p_1})^n(-\frac{ia}{\hbar}\hat{p_2})^m\psi(x_1, x_2)
\]
\[= \sum_n \frac{1}{n!}(-\frac{ia}{\hbar}\hat{p_1})^n \sum_m (-\frac{ia}{\hbar}\hat{p_2})^m \psi(x_1, x_2) = e^{-ia/\hbar\hat{P}} \psi(x_1, x_2) = \hat{T}(a)\psi(x_1, x_2)
\]
所以 \(\hat{T}(a) = e^{-ia/\hbar\hat{P}}\) 得证。
(b)