这些网络提供了一种即插即用的注意力模块,可以嵌入到现有的主流架构(如ResNet, VGG, MobileNet等)中,带来几乎无成本的性能提升。
四种网络核心思想:
1. SENet (Squeeze-and-Excitation Network): 通道注意力(Channel Attention)。专注于建模通道之间的相互依赖关系,自动学习到每个通道的重要程度,然后为重要的通道赋予更大的权重。
2. CBAM (Convolutional Block Attention Module): 通道注意力 + 空间注意力 的串联结构。认为只关注通道维度是不够的,空间位置上的信息也同样重要。CBAM依次从通道和空间两个维度计算注意力图。
3. SKNet (Selective Kernel Networks): 动态选择不同大小的卷积核(感受野)。让网络能够根据输入信息的复杂程度,自适应地调节其感受野的大小。
4. ECANet (Efficient Channel Attention Network): 对SENet的轻量化和改进。认为SENet中的降维操作对通道注意力预测会产生副作用,并且两个全连接层显得笨重。ECANet提出了一种不降维的、更高效的局部跨通道交互策略。
总结与对比:
网络 | 核心思想 | 注意力维度 | 主要特点 | 优点 | 缺点 |
---|---|---|---|---|---|
SENet | 通道重要性 | 通道 | GAP + FC + Sigmoid | 开创性强,即插即用,效果显著 | 降维可能破坏通道关系,有参数量 |
CBAM | 通道+空间重要性 | 通道 & 空间 | GAP+GMP → MLP;通道池化 → Conv | 注意力更全面,效果通常优于SENet | 顺序结构可能非最优 |
SKNet | 动态选择感受野 | 尺度/核 | 多分支卷积,自适应加权融合 | 自适应能力强,多尺度性能优异 | 计算和参数量较大 |
ECANet | 高效通道交互 | 通道 | GAP + 1DConv + Sigmoid | 极其轻量,无降维,效率极高 | 仅通道维度 |
代码如下:
import torch import torch.nn as nnclass SeNet(nn.Module):def __init__(self, inchannel, ratio=16):super(SeNet, self).__init__()self.gap = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(inchannel, inchannel // ratio, bias=False), # 从 c -> c/rnn.ReLU(inplace=True),nn.Linear(inchannel // ratio, inchannel, bias=False), # 从 c/r -> c nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()y = self.gap(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * y.expand_as(x)class CbamNet(nn.Module):def __init__(self, channels, reduction=16):super(CbamNet, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1,padding=0)self.relu = nn.ReLU(inplace=True)self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1,padding=0)self.sigmoid_channel = nn.Sigmoid()self.conv_after_concat = nn.Conv2d(2,1,kernel_size=3,stride=1,padding=1)self.sigmoid_spatial = nn.Sigmoid()def forward(self, x):# avg全局池化+MLPavg = self.avg_pool(x) avg = self.fc1(avg) avg = self.relu(avg) avg = self.fc2(avg) # max全局池化+MLPmx = self.max_pool(x) mx = self.fc1(mx) mx = self.relu(mx) mx = self.fc2(mx) x = x * self.sigmoid_channel(avg+mx)module_input = x avg = torch.mean(x, 1, True)mx, _ = torch.max(x, 1, True)x = torch.cat((avg, mx), 1)x = self.conv_after_concat(x)x = self.sigmoid_spatial(x)x = module_input * xreturn xclass SkNet(nn.Module):def __init__(self,inchannel,ratio=16):super(SkNet,self).__init__()self.conv3x3 = nn.Conv2d(inchannel,inchannel,kernel_size=3,dilation=1, padding=1)self.conv5x5 = nn.Conv2d(inchannel,inchannel,kernel_size=3,dilation=2, padding=2)self.avg = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(inchannel, inchannel // ratio, bias=False), # 从 c -> c/rnn.ReLU(inplace=True),nn.Linear(inchannel // ratio, inchannel*2, bias=False) # 从 c/r -> c )self.softmax = nn.Softmax(dim=1)def forward(self,x):x1 = self.conv3x3(x)x2 = self.conv5x5(x)z = x1 + x2B, C, _, _ = z.size()z = self.avg(z).view(B, C)z = self.fc(z)z = z.view(B, 2, C) a = z[:, 0, :].unsqueeze(-1).unsqueeze(-1) # [B, C, 1, 1]b = z[:, 1, :].unsqueeze(-1).unsqueeze(-1)x1 = x1 * ax2 = x2 * bx = x1 + x2return xclass EcaNet(nn.Module):def __init__(self,k_size=3):super(EcaNet, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):y = self.avg_pool(x)y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)y = self.sigmoid(y)return x * y.expand_as(x)se_model = SeNet(128) cbma_model = CbamNet(128,16) sk_model = SkNet(128,16) eca_model = EcaNet()x = torch.randn([1,128,200,200]) # y = cbma_model(x) torch.onnx.export(se_model,x,'se_net.onnx',opset_version=11) torch.onnx.export(cbma_model,x,'cbma_net.onnx',opset_version=11) torch.onnx.export(sk_model,x,'sk_net.onnx',opset_version=11) torch.onnx.export(eca_model,x,'eca_net.onnx',opset_version=11)