告别人工标注瓶颈!Reward-RAG:用 CriticGPT 打造更懂人类偏好的检索模型

news/2025/9/17 18:20:03/文章来源:https://www.cnblogs.com/freedom-w/p/19097264

image
Reward-RAG: Enhancing RAG with Reward Driven Supervision

全文摘要

本文介绍了一种名为Reward-RAG的新方法,旨在通过奖励驱动监督增强Retrieval-Augmented Generation(RAG)模型。与以往的RAG方法不同,该方法使用了CriticGPT训练了一个专门的奖励模型,并利用该模型生成合成数据集对RAG编码器进行微调,使其输出更符合人类偏好。该方法适用于各种领域,可以通过领域特定的微调有效地应用。实验结果表明,Reward-RAG在多个领域的公开基准测试中表现出了显著的性能提升,这强调了将奖励模型与RAG集成以实现自然语言生成任务优越成果的潜力。

论文方法

方法描述

本文提出的Reward-RAG是一种基于强化学习的多文档检索模型,用于提高多文档检索的质量。该模型包括两个主要部分:奖励模型和反馈数据收集。

首先,通过使用一个嵌入式语言模型来计算查询和文档之间的相似度得分。然后,使用自动回归和双向语言模型作为检索模型,并添加特殊标记[CLS]和[EOS]以表示输入序列。最后,使用奖励模型来评估查询和文档的相关性,并根据此评分调整检索模型。

在收集反馈数据时,使用现有的检索编码器来检索与每个查询相关的前25个文档。然后选择最相关的一个文档并随机选取另外四个文档,其中忽略那些高于阈值的相关性分数的文档。接下来,使用LLMs对所选(查询,文档)对进行反馈,并训练奖励模型以评估与查询相关的前25个文档。

方法改进

本文提出的Reward-RAG相对于传统的RAG模型有以下改进:

  1. 使用强化学习方法,可以更准确地调整检索模型,从而更好地匹配用户偏好。
  2. 奖励模型可以更精确地评估查询和文档的相关性,而不需要人工标注。
  3. 收集反馈数据的方式更加高效,可以更快地更新检索模型。

解决的问题

本文提出的Reward-RAG解决了传统RAG模型的一些问题,如:

  1. 无法适应不同任务和用户偏好的需求。
  2. 由于需要大量的人工标注,难以快速更新检索模型。
  3. 检索结果可能不完全符合用户的期望,因为检索模型缺乏足够的信息。

因此,Reward-RAG提供了一种更有效、更准确的多文档检索解决方案,可以满足不同任务和用户偏好的需求,并且可以更快地更新检索模型。

figure_2

论文实验

本文主要介绍了在自然语言处理领域中的两个任务:信息检索和文本生成,并进行了多个实验来比较不同模型的性能。具体来说,作者首先对通用领域的开放域问答任务进行了实验,包括NQ和TriviaQA数据集,使用了Promptgator、Dragon等基线模型,并将他们的性能与我们的模型进行了比较。实验结果表明,在NQ数据集上,我们的模型是最佳模型之一,在TriviaQA数据集上,我们的模型也是第二好的模型之一。此外,作者还进行了事实验证任务的实验,使用FEVER数据集,并将其与其他基线模型进行了比较。实验结果表明,我们的模型在该任务中也表现良好。

接下来,作者对特定领域的RAG任务进行了研究,使用Mirage数据集进行了实验,并将我们的模型与其他基线模型进行了比较。实验结果表明,在PubMedQA数据集上,我们的模型表现最好,在BioASQ数据集上排名第二。

此外,作者还进行了几个附加实验来进一步探究其方法的有效性。例如,他们比较了从不同的LLMs收集反馈的质量,并发现GPT-4o比GPT-3.5更准确和一致。此外,他们还尝试了不同的提示技术来控制LLMs的质量,并发现在“思考分步法”的提示下,LLMs的注释更加准确和可靠。

总的来说,本文展示了作者的方法在多个任务和数据集上的有效性,并提供了详细的实验细节和结果分析。

table_1

table_4

table_5

论文总结

文章优点

本文提出了一种新的方法,名为Reward-RAG,通过将奖励模型集成到传统的RAG框架中来提高RAG系统的性能。该方法利用CriticGPT生成定制数据集,并实现通用领域和特定领域的精细调整,使模型输出更符合人类偏好。实验结果表明,这种方法在各种领域都取得了很好的效果,不仅提高了生成响应的相关性和质量,而且比现有最佳方法有了显著的进步。

方法创新点

本文的主要贡献在于提出了一种新颖的方法,即使用奖励模型来增强RAG系统的能力。具体来说,作者使用了CriticGPT来模拟人类偏好,并将其用于评估检索文档和查询之间的相关性。然后,他们使用这些模型对现有的检索模型进行微调,以从外部语料库中检索高质量的内容。这种方法旨在弥合一般检索能力与用户偏好的特定需求之间的差距,从而提高生成响应的相关性和质量。

未来展望

本文提出的Reward-RAG方法为RAG系统的改进提供了一个有前途的方向。未来的研究可以进一步探索如何优化奖励模型的设计,以及如何更好地利用CriticGPT来生成更具代表性的定制数据集。此外,还可以考虑将其他强化学习技术应用于RAG系统,以进一步提高其性能。总之,本文的工作为自然语言处理领域的研究提供了有价值的参考。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/906708.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Latex 中百分号怎么打

Latex 中百分号怎么打 由于 % 被用作注释符,所以前面 + \ 进行转义 \(\frac{285.5}{1-2.7\%}\)

文件上传-条件竞争绕过

条件竞争原理: 条件竞争的逻辑是代码逻辑问题:当我们文件上传到服务器时,先对文件进行保存,然后对文件的后缀名进行判断,符合白名单的保存,不符合就删除,但在删除之前,有另一个对服务器发起的请求,要访问这个文件,那么就可能造成文件被读取和访问。这就是条件竞争。 …

9.17 CSP-S模拟23/多校A层冲刺NOIP2024模拟赛19 改题记录

HZOJ 写在前面 连着三天吃三坨。本来想着今天大凶忌参加模拟赛然后没模拟赛挺好的,然后7:57临时通知加场,难道这就是大凶?好吧打就打吧,没想到真差点爆零。粗看没一道题可做怀疑自己的水平了然后赛后猛然醒悟是自己蠢如猪。其实这篇前面应该还有两篇,但是奈何这套改完得比…

Java基本语法

Java基本语法Day04 今天内容大部分在复习运算符的内容和分支语句练习题 复习运算符: 运算符:+ - + - * / % (前)++ (后)++ (前)-- (后)-- + 算术运算符: 【特别说明的】 1.//(前)++ :先自增1,后运算 //(后)++ :先运算,后自增1 2.//(前)-- :先自减1,后运算 //(后)-- :先运算,…

在AI技术快速实现创想的时代,挖掘前端学习新需求成为关键——某知名编程教育平台需求洞察

本文分析了一个包含50个前端项目的编程学习资源,涵盖交互设计、动画效果和实用工具等多种类型,通过用户反馈发现了界面优化、功能扩展和教学改进等方面的潜在需求。a.内容描述 该项目是一个包含50个独立前端项目的编程学习资源,核心功能定位在于通过实际项目练习帮助开发者掌…

IvorySQL 与 deepin 完成兼容性认证,共创开源生态新篇章

近日,IvorySQL 与 deepin 操作系统成功完成了兼容性适配认证。这一里程碑式的成就标志着 IvorySQL 在国产操作系统生态中的进一步深化,为用户提供更稳定、高效的数据库解决方案。deepin 简介 深度操作系统 deepin 是一款以“简洁、美观、易用”著称的国产 Linux 发行版,拥有…

在 Nginx 上搭建静态站点

1、新建站点的配置文件 vi /etc/nginx/conf.d/www.xxx.com.conf2、写入如下内容: server {listen 80;#listen [::]:80;server_name www.xxx.com; # 这里可以写你的域名,或者 _ 表示匹配所有 root /var/www/www.xxx.com; # 你的静态文件目录 index index.html index.htm;locat…

kylin SP3安装mysql 8.4.5

环境:OS:kylin SP3mysql:8.4.5 glibc2.17,建议安装glibc.2.28版本 查看系统glibc版本[root@localhost ~]# ldd --versionldd (GNU libc) 2.28Copyright (C) 2018 自由软件基金会。这是一个自由软件;请见源代码的授权条款。本软件不含任何没有担保;甚至不保证适销性或者适合某…

Unity中是否可以禁用GC

1)Unity中可以禁用GC吗2)项目是URP管线,渲染模块CPU耗时高,经排查主要是Batches数过高,应怎样进一步排查和优化渲染批次这是第445篇UWA技术知识分享的推送,精选了UWA社区的热门话题,涵盖了UWA问答、社区帖子等技术知识点,助力大家更全面地掌握和学习。 UWA社区主页:co…

经典SQL语句大全

经典SQL语句大全一、基础1、说明:创建数据库CREATE DATABASE database-name2、说明:删除数据库drop database dbname3、说明:备份sql server--- 创建 备份数据的 deviceUSE masterEXEC sp_addumpdevice disk, testBack, c:\mssql7backup\MyNwind_1.dat--- 开始 备份BACKUP D…

Rhinoceros 8.23.25251.13001 犀牛3D建模

描述 Rhinoceros 是由美国Robert McNeel公司最新出品的专业强大的3D建模软件。软件以集百家之长为一体的发展教育理念,拥有NURBS的优秀传统建模教学方法,也有一个网格进行建模插件T-Spline,使建模方式方法有了更多的挑选,然后能创建出更传神、生动的造型。能输入和输出几十…

《深入理解计算机系统》计算机系统漫游(一) - Invinc

本文记录《深入理解计算机系统》中第1章 计算机系统漫游 的一些知识点。本文记录《深入理解计算机系统》中第1章 计算机系统漫游 的一些知识点。第1章 计算机系统漫游 信息就是位+上下文 系统中所有的信息——包括磁盘文件、内存中的程序、内存中存放的用户数据以及网络上传送的…

从几何分离到语义理解:深度解析3D点云分割与语义分割的本质区别

在三维计算机视觉领域,3D点云作为真实世界场景的核心数据载体,其处理技术直接决定了机器感知环境的精度与效率。 其中,3D点云分割与语义分割是两类关键技术,尽管二者同属点云处理范畴,但在目标定位、信息输出与应用价值上存在本质差异。 前者专注于“几何层面的分离”,通…

欧拉筛(线性筛)算法分析

前言对于寻找素数,第一时间想到的便是二重循环暴力查找,其复杂度O(n^2),通过循环中只判断到根号n可以优化一些,不过复杂度也达不到预期。在数论的学习中,我学到了埃氏筛法,O(nloglogn)的算法,而在一些数据范围达到1e7这样的题目中,也很难让人满意,于是我便学习了欧拉筛…

2021年安徽省大数据与人工智能应用竞赛 大数据(网络赛)-高职组赛题

本套数据数据: 通过网盘分享的文件: 链接: https://pan.baidu.com/s/1ZQXoWQhCOAiGVcFOZozV1g?pwd=json 提取码: json 第二部分:大数据程序编写部分(30分) 任务一、数据抽取转化部分(5分) 1、使用sqoop将MySQL的sakila数据库中的city表中city列以C开头的数据导入到hdfs…

一些写了和没写的数学!

P8114 [Cnoi2021] 六边形战士 传送 非常好玩的题! 首先你大概率看过一些“无字证明”,其中很经典的是这个: 证明:用若干个边长为 \(1\),顶角为 \(60\) 度的菱形拼成一个边长为 \(n\) 的正六边形,三个方向的菱形个数一定相等。这是一个经典的无字证明,虽然前置的说明要费…

【光照】[自发光Emission]以UnityURP为例

【从UnityURP开始探索游戏渲染】专栏-直达自发光的基本原理 $Cemissive=Memissive$ 自发光是物体表面主动发射光线的现象,在光照模型中通常作为独立于外部光源的附加项。其核心特点是不受其他光照影响,但可以影响周围环境。 实现流程‌定义发射颜色和强度‌:确定基础发光颜色…

mybatis-plus初体验,解决报错Invalid value type for attribute factoryBeanObjectType: java.lang.String

解决报错Invalid value type for attribute factoryBeanObjectType: java.lang.String 推荐这位大佬的博客: https://www.cnblogs.com/muphy/p/18653627 项目结构MyBatis-Plus配置类MyBatisPlusConfig package com.example.config;import com.baomidou.mybatisplus.annotation…

Alexandresku设计的loki小对象内存分配器

Loki是由 Alexandresku 编写的一个与《Modern C++ Design》(C++设计新思维)一书配套发行的C++代码库。其中有两个文件 SmallObj.h 、SmallObj.cpp 进行内存管理,可以单独进行使用 三个class,第一层是chunk,第二层是vector<chunk> FixedAllocator,第三层是vector&l…

C++ 内存管理

C++ 内存管理是程序设计的核心环节,直接影响程序的性能、稳定性和安全性。C++ 不像 Java、Python 等语言有自动垃圾回收机制,而是需要开发者手动管理动态内存(或通过智能指针等机制自动管理)。 1、C++ 内存分区内存区域 存储内容 生命周期 管理方式栈 (Stack) 函数参数、局…