【ArcGIS】根据shp范围生成系列等距点
- 目标1:生成边界外一定范围、并且等间距分布的点
- 📁 所需数据:
- 操作步骤-ArcGIS
- 代码处理-Python
- 目标2:生成等距渔网点
- 📁 所需数据:
- 代码处理-Python
- 参考
目标1:生成边界外一定范围、并且等间距分布的点
目标:生成位于 某地区边界外一定范围、并且等间距分布的点图层。
📁 所需数据:
研究区边界 .shp 文件(Polygon 类型)
操作步骤-ArcGIS
ArcGIS 中最简单的方式是:
- 对边界生成缓冲区(一定距离)
例如 50 km - 将边界 + 缓冲区边界都转为线(Polyline)
- 在缓冲区边界线(外圈)上以等间距生成点
代码处理-Python
以重庆市为例,生成的外部等距点如下:
Python完整代码如下:
import arcpy
import os# 输入路径(替换为你的路径)
input_shp = r"D:\0 DataBase\0 Chongqin Database\1 Boundary\Chongqing.shp"
workspace = r"D:\0 DataBase\0 Chongqin Database\1 Boundary\temp_boundary_points"
csv_output = r"D:\0 DataBase\0 Chongqin Database\1 Boundary\Boundary_Chongqing.csv"# 设置环境
arcpy.env.overwriteOutput = True
if not os.path.exists(workspace):os.makedirs(workspace)
arcpy.env.workspace = workspace# 坐标系
prj = arcpy.SpatialReference(4548) # CGCS2000 / UTM Zone 48N
wgs84 = arcpy.SpatialReference(4326) # WGS84 经纬度try:# 1. 投影为米制projected = os.path.join(workspace, "Chongqing_projected.shp")arcpy.Project_management(input_shp, projected, prj)# 2. 创建缓冲区(50公里)buffer = os.path.join(workspace, "Chongqing_buffer.shp")arcpy.Buffer_analysis(projected, buffer, "50000 Meters", dissolve_option="ALL")# 3. 缓冲区转为边界线buffer_line = os.path.join(workspace, "buffer_line.shp")arcpy.PolygonToLine_management(buffer, buffer_line)# 4. 沿线生成等间距点(20km 间距)points_on_line = os.path.join(workspace, "control_points.shp")arcpy.GeneratePointsAlongLines_management(buffer_line,points_on_line,"DISTANCE","20000 Meters","","NO_END_POINTS")# 5. 投影为 WGS84points_wgs84 = os.path.join(workspace, "control_points_wgs84.shp")arcpy.Project_management(points_on_line, points_wgs84, wgs84)# 6. 添加几何属性(使用合法值 POINT_X_Y_Z_M)arcpy.AddGeometryAttributes_management(points_wgs84,"POINT_X_Y_Z_M")# 7. 导出为 CSVarcpy.TableToTable_conversion(points_wgs84,os.path.dirname(csv_output),os.path.basename(csv_output))print("✅ 成功生成控制点 CSV 文件:Boundary_Chongqing.csv")except Exception as e:print("❌ 脚本运行出错:", str(e))
目标2:生成等距渔网点
生成shp边界范围内的等距渔网点,如下:
📁 所需数据:
研究区边界 .shp 文件(Polygon 类型)
代码处理-Python
以重庆市为例,生成的渔网如下:(仅保留边界内数据)
Python完整代码如下:
import geopandas as gpd
from shapely.geometry import Point
import pandas as pd
import numpy as np
import osdef generate_grid_points(shp_path=None,output_csv="pop_location_d01.csv",spacing=0.1,filter_by_shp=True
):"""生成等距网格点,支持基于Shapefile筛选或仅参考其范围生成。参数:shp_path (str): SHP文件路径(若 filter_by_shp=True 时必须提供)output_csv (str): 输出CSV文件名spacing (float): 网格间隔(单位:度)filter_by_shp (bool): 是否根据SHP边界筛选点返回:pd.DataFrame: 包含经纬度的DataFrame"""# 检查shp文件路径(无论 filter_by_shp 为True或False,都需要范围)if shp_path is None or not os.path.exists(shp_path):raise ValueError("必须提供有效的 shp_path。")# 读取边界gdf_boundary = gpd.read_file(shp_path)gdf_boundary = gdf_boundary.to_crs(epsg=4326)minx, miny, maxx, maxy = gdf_boundary.total_bounds# 向外扩展到最接近的整数minX = np.floor(minx)maxXX = np.ceil(maxx)minY = np.floor(miny)maxY = np.ceil(maxy)# 生成经纬度序列lon_vals = np.arange(minx, maxx + spacing, spacing)lat_vals = np.arange(miny, maxy + spacing, spacing)# 创建所有网格点grid_points = [Point(lon, lat) for lon in lon_vals for lat in lat_vals]gdf_points = gpd.GeoDataFrame(geometry=grid_points, crs="EPSG:4326")# 如果需要进行边界筛选if filter_by_shp:gdf_points = gdf_points[gdf_points.within(gdf_boundary.unary_union)]# 提取经纬度gdf_points["lon"] = gdf_points.geometry.xgdf_points["lat"] = gdf_points.geometry.y# 保存为CSVgdf_points[["lon", "lat"]].to_csv(output_csv, index=False, encoding="utf-8")print(f"✅ 成功生成 {len(gdf_points)} 个网格点,已保存到:{output_csv}")return gdf_points[["lon", "lat"]]# 示例调用
generate_grid_points(shp_path=r"D:\0 DataBase\0 Chongqin Database\1 Boundary\Chongqing.shp",output_csv="pop_location_d01_CQ.csv",spacing=0.1,filter_by_shp=False # 不进行空间筛选,但以shp边界范围扩展生成
)