【失败了】LazyGraphRAG利用本地ollama提供Embedding model服务和火山引擎的deepseek API构建本地知识库

LazyGraphRAG测试结果如下
数据:
curl https://www.gutenberg.org/cache/epub/24022/pg24022.txt -o ./ragtest/input/book.txt
失败了
在这里插入图片描述
气死我也!!!对deepseek-V3也不是很友好啊,我没钱prompt 微调啊,晕死
将模型从deepseek切换为豆包后成功!
在这里插入图片描述

明日继续研究更新
在这里插入图片描述

错误log:
主要是ds的json遵循能力还是有点弱啊

The above exception was the direct cause of the following exception:Traceback (most recent call last):File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/fnllm/base/base_llm.py", line 144, in __call__return await self._decorated_target(prompt, **kwargs)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/fnllm/base/services/json.py", line 77, in invokereturn await this.invoke_json(delegate, prompt, kwargs)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/fnllm/base/services/json.py", line 100, in invoke_jsonraise FailedToGenerateValidJsonError from error
fnllm.base.services.errors.FailedToGenerateValidJsonErrorDuring handling of the above exception, another exception occurred:Traceback (most recent call last):File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/graphrag/index/operations/summarize_communities/community_reports_extractor.py", line 80, in __call__response = await self._model.achat(File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/graphrag/language_model/providers/fnllm/models.py", line 81, in achatresponse = await self.model(prompt, **kwargs)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/fnllm/openai/llm/openai_chat_llm.py", line 94, in __call__return await self._text_chat_llm(prompt, **kwargs)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/fnllm/openai/services/openai_tools_parsing.py", line 130, in __call__return await self._delegate(prompt, **kwargs)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/fnllm/base/base_llm.py", line 148, in __call__await self._events.on_error(File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/graphrag/language_model/providers/fnllm/events.py", line 26, in on_errorself._on_error(error, traceback, arguments)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/graphrag/language_model/providers/fnllm/utils.py", line 45, in on_errorcallbacks.error("Error Invoking LLM", error, stack, details)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/graphrag/callbacks/workflow_callbacks_manager.py", line 64, in errorcallback.error(message, cause, stack, details)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/site-packages/graphrag/callbacks/file_workflow_callbacks.py", line 37, in errorjson.dumps(File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/json/__init__.py", line 238, in dumps**kw).encode(obj)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/json/encoder.py", line 201, in encodechunks = list(chunks)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/json/encoder.py", line 431, in _iterencodeyield from _iterencode_dict(o, _current_indent_level)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/json/encoder.py", line 405, in _iterencode_dictyield from chunksFile "/home/zli/miniconda3/envs/graphrag/lib/python3.10/json/encoder.py", line 405, in _iterencode_dictyield from chunksFile "/home/zli/miniconda3/envs/graphrag/lib/python3.10/json/encoder.py", line 405, in _iterencode_dictyield from chunksFile "/home/zli/miniconda3/envs/graphrag/lib/python3.10/json/encoder.py", line 438, in _iterencodeo = _default(o)File "/home/zli/miniconda3/envs/graphrag/lib/python3.10/json/encoder.py", line 179, in defaultraise TypeError(f'Object of type {o.__class__.__name__} '
TypeError: Object of type ModelMetaclass is not JSON serializable
22:53:43,292 graphrag.callbacks.file_workflow_callbacks INFO Community Report Extraction Error details=None
22:53:43,293 graphrag.index.operations.summarize_communities.strategies WARNING No report found for community: 8.0

配置如下:

models:default_chat_model:type: openai_chat # or azure_openai_chatapi_base: https://ark.cn-beijing.volces.com/api/v3/# api_version: 2024-05-01-previewauth_type: api_key # or azure_managed_identityapi_key: ${GRAPHRAG_API_KEY} # set this in the generated .env file# audience: "https://cognitiveservices.azure.com/.default"# organization: <organization_id>model: deepseek-v3-241226# deployment_name: <azure_model_deployment_name>encoding_model: cl100k_base # automatically set by tiktoken if left undefinedmodel_supports_json: true # recommended if this is available for your model.concurrent_requests: 25 # max number of simultaneous LLM requests allowedasync_mode: threaded # or asyncioretry_strategy: nativemax_retries: -1                   # set to -1 for dynamic retry logic (most optimal setting based on server response)tokens_per_minute: 0              # set to 0 to disable rate limitingrequests_per_minute: 0            # set to 0 to disable rate limitingdefault_embedding_model:type: openai_embedding # or azure_openai_embeddingapi_base: http://localhost:11434/v1/# api_version: 2024-05-01-preview#auth_type: api_key # or azure_managed_identity#type: openai_chatapi_key: ollama# audience: "https://cognitiveservices.azure.com/.default"# organization: <organization_id>model: bge-m3# deployment_name: <azure_model_deployment_name>encoding_model: cl100k_base # automatically set by tiktoken if left undefinedmodel_supports_json: true # recommended if this is available for your model.concurrent_requests: 25 # max number of simultaneous LLM requests allowedasync_mode: threaded # or asyncioretry_strategy: nativemax_retries: -1                   # set to -1 for dynamic retry logic (most optimal setting based on server response)tokens_per_minute: 0              # set to 0 to disable rate limitingrequests_per_minute: 0            # set to 0 to disable rate limitingvector_store:default_vector_store:type: lancedbdb_uri: output/lancedbcontainer_name: defaultoverwrite: Trueembed_text:model_id: default_embedding_modelvector_store_id: default_vector_store### Input settings ###input:type: file # or blobfile_type: text #[csv, text, json]base_dir: "input"chunks:size: 1200overlap: 100group_by_columns: [id]### Output settings ###
## If blob storage is specified in the following four sections,
## connection_string and container_name must be providedcache:type: file # [file, blob, cosmosdb]base_dir: "cache"reporting:type: file # [file, blob, cosmosdb]base_dir: "logs"output:type: file # [file, blob, cosmosdb]base_dir: "output"### Workflow settings ####extract_graph:
#  model_id: default_chat_model
#  prompt: "prompts/extract_graph.txt"
#  entity_types: [organization,person,geo,event]
#  max_gleanings: 1summarize_descriptions:model_id: default_chat_modelprompt: "prompts/summarize_descriptions.txt"max_length: 500extract_graph_nlp:text_analyzer:extractor_type: regex_english # [regex_english, syntactic_parser, cfg]extract_claims:enabled: falsemodel_id: default_chat_modelprompt: "prompts/extract_claims.txt"description: "Any claims or facts that could be relevant to information discovery."max_gleanings: 1community_reports:model_id: default_chat_modelgraph_prompt: "prompts/community_report_graph.txt"text_prompt: "prompts/community_report_text.txt"max_length: 8000max_input_length: 4000cluster_graph:max_cluster_size: 10embed_graph:enabled: false # if true, will generate node2vec embeddings for nodesumap:enabled: false # if true, will generate UMAP embeddings for nodes (embed_graph must also be enabled)snapshots:graphml: falseembeddings: false### Query settings ###
## The prompt locations are required here, but each search method has a number of optional knobs that can be tuned.
## See the config docs: https://microsoft.github.io/graphrag/config/yaml/#querylocal_search:chat_model_id: default_chat_modelembedding_model_id: default_embedding_modelprompt: "prompts/local_search_system_prompt.txt"global_search:chat_model_id: default_chat_modelmap_prompt: "prompts/global_search_map_system_prompt.txt"reduce_prompt: "prompts/global_search_reduce_system_prompt.txt"knowledge_prompt: "prompts/global_search_knowledge_system_prompt.txt"drift_search:chat_model_id: default_chat_modelembedding_model_id: default_embedding_modelprompt: "prompts/drift_search_system_prompt.txt"reduce_prompt: "prompts/drift_search_reduce_prompt.txt"basic_search:chat_model_id: default_chat_modelembedding_model_id: default_embedding_modelprompt: "prompts/basic_search_system_prompt.txt"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/898135.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ccfcsp3402矩阵重塑(其二)

//矩阵重塑&#xff08;其二&#xff09; #include<iostream> using namespace std; int main(){int n,m,t;cin>>n>>m>>t;int c[10000][10000];int s0,sum0;int d[10000],k[100000];for(int i0;i<n;i){for(int j0;j<m;j){cin>>c[i][j];d[s…

算法-除自身以外数组的乘积

力扣题目&#xff1a;238. 除自身以外数组的乘积 - 力扣&#xff08;LeetCode&#xff09; 题目描述&#xff1a; 给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums…

Unity Shader - UI Sprite Shader之简单抠图效果

Sprite抠图效果&#xff1a; 前言 在PhotoShop中我们经常会用到抠图操作&#xff0c;现在就用Shader实现一个简单的抠图效果。 实现原理&#xff1a; 使用当前像素颜色与需要抠掉的颜色相减作比较&#xff0c;然后与一个指定的阈值比较以决定是否将其显示出来&#xff1b; U…

【Mac】安装 Parallels Desktop、Windows、Rocky Linux

一、安装PD 理论上&#xff0c;PD只支持试用15天&#xff01;当然&#xff0c;你懂的。 第一步&#xff0c;在 Parallels Desktop for Mac 官网 下载 Install Parallels Desktop.dmg第二步&#xff0c;双击 Install Parallels Desktop.dmg 第三步&#xff0c;双击安装Paralle…

学习单片机需要多长时间才能进行简单的项目开发?

之前有老铁问我&#xff0c;学单片机到底要多久&#xff0c;才能进行简单的项目开发&#xff1f;是三个月速成&#xff0c;还是三年磨一剑&#xff1f; 今天咱们就来聊聊这个话题&#xff0c;我不是什么高高在上的专家&#xff0c;就是个踩过无数坑、烧过几块板子的“技术老友”…

pyqt 上传文件或者文件夹打包压缩文件并添加密码并将密码和目标文件信息保存在json文件

一、完整代码实现 import sys import os import json import pyzipper from datetime import datetime from PyQt5.QtWidgets import (QApplication, QWidget, QVBoxLayout, QHBoxLayout,QPushButton, QLineEdit, QLabel, QFileDialog,QMessageBox, QProgressBar) from PyQt5.…

centos操作系统上传和下载百度网盘内容

探序基因 整理 进入百度网盘官网百度网盘 客户端下载 下载linux的rpm格式的安装包 在linux命令行中输入&#xff1a;rpm -ivh baidunetdisk_4.17.7_x86_64.rpm 出现报错&#xff1a; 错误&#xff1a;依赖检测失败&#xff1a; libXScrnSaver 被 baidunetdisk-4.17.7-1.x8…

LeetCode134☞加油站

关联LeetCode题号134 本题特点 贪心局部最优解-部分差值 如果小于0&#xff08;消耗大于油站油量&#xff09; 就从下一个加油站开始&#xff0c;因为如果中间有小于0的情况 当前站就不可能是始发站&#xff0c;整体最优解-整体差值 如果小于0 &#xff0c;那么就是不能有始发…

基于 Verilog 的时序设计:从理论到实践的深度探索

在数字电路设计领域,时序设计是一个至关重要的环节,它涉及到组合逻辑电路与时序逻辑电路的设计差异、时钟信号的运用以及触发器的工作原理等多个方面。本文将围绕基于 Verilog 的时序设计实验展开,详细阐述实验过程、代码实现以及结果分析,帮助读者深入理解时序设计的核心概…

蓝牙系统的核心组成解析

一、硬件层&#xff1a;看得见的物理载体 1. 射频模块&#xff08;Radio Frequency Module&#xff09; 专业描述&#xff1a;工作在2.4GHz ISM频段&#xff0c;支持GFSK/π/4 DQPSK/8DPSK调制方式 功能类比&#xff1a;相当于人的"嘴巴"和"耳朵" 发射端…

猎豹移动(Cheetah Mobile)

本文来自腾讯元宝 公司背景与发展历程 ​成立与早期定位 猎豹移动成立于2010年11月&#xff0c;由金山安全与可牛影像合并而成&#xff0c;初期以移动安全工具和清理软件为核心业务。其明星产品包括《猎豹清理大师》&#xff08;Clean Master&#xff09;和《猎豹浏览器》&…

go的gmp

参考链接&#xff1a;https://www.bilibili.com/video/BV19r4y1w7Nx Golang的GMP调度模型(协程调度器)是其并发编程的核心。GMP代表Goroutine、Machine和Processor三个关键组成部分。Goroutine是Go语言中的轻量级线程&#xff0c;Machine是操作系统的线程&#xff0c;Processor…

Vue3-高级特性

一、Vue中自定义指令 1.认识自定义指令 在Vue的模板语法中我们学习过各种各样的指令&#xff1a;v-show、v-for、v-model等等&#xff0c;除了使用这些指令之外&#xff0c;Vue也允许我们来 自定义自己的指令。 注意&#xff1a;在Vue中&#xff0c;代码的复用和抽象主要还是…

【量化策略】动量突破策略

【量化策略】动量突破策略 &#x1f680;量化软件开通 &#x1f680;量化实战教程 技术背景与应用场景 动量突破策略是一种基于市场趋势的量化交易策略&#xff0c;它通过识别资产价格的动量变化来预测未来的价格走势。这种策略适用于那些价格波动较大、趋势明显的市场环境…

基于CPLD电力/轨道交通3U机箱开关量输出板(DO)

板卡简介&#xff1a; 本板为开关量输出板&#xff08;DO&#xff09;&#xff0c;采用固态继电器用于电平输出或负载驱动&#xff0c;典型输出高电平为DC110V&#xff0c;低电平为0V。 性能规格&#xff1a; 电源&#xff1a;DC5V&#xff0c;DC3.3V&#xff0c;DC15V&#…

【C++经典例题】反转字符串中单词的字符顺序:两种实现方法详解

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;C经典例题 期待您的关注 目录 问题描述 基于快慢指针的解法 基于索引的解法 两种方法的比较 问题描述 在处理字符串相关的问题…

Java基础语法练习45(网络编程)

目录 一、网络的相关概念 1.网络通信 2.网络 3.ip 地址 4.ipv4 地址分类 5.域名 6.网络通信协议 7.TCP 和 UDP 二、InetAddress类 1.相关方法 2.代码示例如下&#xff1a; 三、Socket 1.基本介绍 四、TCP 网络通信编程 1.基本介绍 2.应用示例&#xff1a; 2.1…

【Json—RPC框架】:宏定义不受命名空间限制,续行符的错误使用造成的bug

为什么不受命名空间的限制&#xff1f; 宏处理在预处理阶段&#xff0c; 预处理在编译之前&#xff0c;编译才进行语法分析&#xff0c;语义分析。命名空间也只能限制这部分。 在Json-RPC框架的实现中&#xff0c;遇到如下问题。一开始以为是在实现日志宏的时候&#xff0c;有…

四川省包含哪些水系

背景&#xff1a; 想知道四川省包含哪些水系&#xff0c;以及各个水系的分布&#xff0c;起点、流经省市、终点等 {label: "嘉陵江",value: "嘉陵江",},{label: "渠江",value: "渠江",},{label: "涪江",value: "涪江&q…

子序列问题写法

子序列问题可以按照动态规划的思想去写。 子序列问题类型 子序列 是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。 例如&#xff0c;[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 写法思路 创建两层for循环…