本地DeepSeek模型GGUF文件转换为PyTorch格式

        接前文,我们在本地Windows系统上,基于GGUF文件部署了DeepSeek模型(DeepSeek-R1-Distill-Qwen-1.5B.gguf版本),但是GGUF是已经量化的版本,我们除了对其进行微调之外,无法对其训练,那么还有没有其他办法对本地的GGUF部署的DeepSeek模型进行训练呢?今天我们就反其道而行之,将GGUF文件转换为PyTorch格式再训练。

        前提:已经部署好了DeepSeek,可以看我的文章:个人windows电脑上安装DeepSeek大模型(完整详细可用教程)_deepseek-r1-distill-qwen-1.5b-gguf-CSDN博客,或是下载有了GGUF文件,可以到我CSDN上下载。

一、对GGUF文件转换为PyTorch格式的思考

        首先,需要确认是否已经有现成的工具或者脚本可以完成这个转换。

        接下来,我应该了解GGUF文件的结构。GGUF是一个二进制格式,包含模型的参数、架构信息和其他元数据。而PyTorch模型通常由模型类定义的结构和state_dict组成,所以转换的关键在于读取GGUF中的参数,并将它们正确地加载到对应的PyTorch模型中。可能需要先加载GGUF文件,读取其中的权重,然后创建一个对应的PyTorch模型结构,并将权重一一对应地填入。所以需要先解决如何读取GGUF文件里面的内容,由什么组成。

        我需要考虑模型的架构是否一致。比如,如果是LLAMA模型的GGUF文件,那么对应的PyTorch模型应该是Hugging Face的LLaMA实现。这时候可能需要确保两者的层结构、参数命名是否匹配。例如,GGUF中的参数名称可能和Hugging Face中的名称不同,需要做映射。这一步可能需要手动编写一些代码来处理参数名称的转换。DeepSeek模型的结构、参数是什么?PyTorch模型的结构、参数是什么?DeepSeek模型的GGUF文件如何对应PyTorch模型

        另外,还需要注意数据类型的问题。GGUF中的参数可能以某种量化格式存储,比如4位或8位整数,而PyTorch模型通常使用32位或16位浮点数。如果是量化过的GGUF模型,转换到PyTorch可能需要反量化,这可能会影响模型的大小和计算效率。但如果是非量化的原始模型,可能可以直接转换。

        以上过程可能涉及到的步骤:

1. 安装必要的库,比如llama-cpp-python,用于读取GGUF文件。

2. 加载GGUF模型,获取其中的权重参数。

3. 创建对应的PyTorch模型结构,例如使用Hugging Face的AutoModelForCausalLM。

4. 将GGUF中的参数转换为PyTorch格式,并加载到模型中。

5. 保存PyTorch模型为标准的格式,如PyTorch的pt文件或上传到Hugging Face Hub。

        可能的难点在于参数名称的映射和格式转换。GGUF中的参数可能以特定的层次结构存储,而PyTorch模型的结构可能不同,需要逐一对应。此外,如果有量化参数,处理起来可能更复杂。因为某些框架可能存储的权重是转置过的。比如,假设GGUF中的某个权重矩阵是(input_dim, output_dim),而PyTorch中对应的线性层权重是(output_dim, input_dim),这时候需要转置。

        总结起来,可能需要考虑的问题有:

1.需要注意不同层的参数名称匹配,需要编写一个映射字典,将GGUF中的参数名称转换为Hugging Face模型的参数名称。

2. 可能需要调整参数的形状或数据类型。

3. 可能需要处理张量的转置。

4. 如果GGUF模型是量化的可能需要反量化。

        根据以上分析得出,转换的具体步骤

1. 解析GGUF文件的元数据以确定模型配置,确定GGUF模型对应的PyTorch模型架构(例如LLaMA)。

2. 安装必要的库,如llama-cpp-python,transformers,torch等。

3. 编写或找到能够读取GGUF文件并提取权重的代码。解析GGUF文件的元数据,确定模型的架构参数(如层数、隐藏层大小、注意力头数等)

4. 根据这些元数据,创建对应的PyTorch模型实例。

5. 遍历GGUF文件中的每个张量,将其转换为PyTorch张量,映射参数名称,调整形状和数据类型,加载到PyTorch模型中。

6. 验证转换后的模型是否能正常推理。

7. 保存PyTorch模型。

二、DeepSeek-R1-Distill-Qwen-1.5B.gguf量化版本分析

        要将DeepSeek模型的GGUF文件转换成Pytorch格式,就要先了解DeepSeek-R1-Distill-Qwen-1.5B是什么,又有哪些版本。DeepSeek-R1-Distill-Qwen-1.5B是一个通过蒸馏技术从DeepSeek-R1模型中提取的紧凑高效版本,专注于数学和逻辑推理任务。该模型提供了多种量化版本,以满足不同的性能和资源需求。

1.量化版本概述

量化类型

文件大小

描述

推荐程度

f32

7.11GB

全精度浮点权重,最高质量,不推荐用于资源受限环境

不推荐

f16

3.56GB

半精度浮点权重,质量接近 f32,资源占用减半

可选

Q8_0

1.89GB

极高精度量化,质量几乎无损,但文件较大

不推荐

Q6_K_L

1.58GB

使用Q8_0量化嵌入和输出权重,非常高质量,近乎完美

推荐

Q6_K

1.46GB

非常高质量,近乎完美

推荐

Q5_K_L

1.43GB

使用 Q8_0 量化嵌入和输出权重,高质量

推荐

Q5_K_M

1.29GB

高质量,推荐

推荐

Q4_K_L

1.29GB

使用 Q8_0 量化嵌入和输出权重,质量良好

推荐

Q5_K_S

1.26GB

高质量,推荐

推荐

Q3_K_XL

1.18GB

较低质量,但适合低内存环境

可选

Q4_1

1.16GB

与 Q4_K_S 性能相似,但在 Apple 硬件上更节能

可选

Q4_K_M

1.12GB

质量良好,适用于大多数场景

推荐

Q4_K_S

1.07GB

质量略有下降,但节省更多空间

推荐

Q4_0

1.07GB

遗留格式,支持 ARM 和 AVX CPU 推理

可选

IQ4_NL

1.07GB

与 IQ4_XS 类似,但略大,支持 ARM CPU 推理

可选

IQ4_XS

1.02GB

质量尚可,体积小,性能与 Q4_K_S 类似

推荐

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/896044.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

http代理IP怎么实现?如何解决代理IP访问不了问题?

HTTP代理是一种网络服务,它充当客户端和目标服务器之间的中介。当客户端发送请求时,请求首先发送到代理服务器,然后由代理服务器转发到目标服务器。同样,目标服务器的响应也会先发送到代理服务器,再由代理服务器返回给…

人工智能之数学基础:施密特正交化

本文重点 在前面的课程中,我们学习了线性空间的基,其中有一个标准正交基的概念,假设现在有一个线性向量空间,然后已经确定了该线性空间的一组基,那么如何将其转变为标准正交基。本文将学习如何通过施密特正交化完成这个任务。 施密特正交化 施密特正交化(Schmidt Orth…

Spark(2)linux和简单命令

(一)Linux的文件系统 文件系统:操作系统中负责管理和存储文件信息的软件结构称为文件管理系统。 文件系统的结构通常叫做目录树结构,从斜杆/根目录开始; Linux号称万物皆文件,意味着针对Linux的操作,大多…

Grok 3.0 Beta 版大语言模型评测

2025年2月17日至18日,全球首富埃隆马斯克(Elon Musk)携手其人工智能公司xAI,在美国重磅发布了Grok 3.0 Beta版。这款被誉为“迄今为止世界上最智能的语言模型”的AI,不仅集成了先进的“DeepSearch”搜索功能&#xff0…

基于COSTAR模型的内容创作:如何用框架提升写作质量

目录 前言1. Context(上下文):理解背景,奠定写作基础1.1 何为上下文1.2 上下文的作用1.3 案例解析 2. Objective(目标):明确写作方向,避免跑题2.1 确立目标2.2 如何设定目标2.3 案例…

Springboot应用开发工具类整理

目录 一、编写目的 二、映射工具类 2.1 依赖 2.2 代码 三、日期格式 3.1 依赖 3.2 代码 四、加密 4.1 代码 五、Http请求 5.1 依赖 5.2 代码 六、金额 6.1?代码 七、二维码 7.1 依赖 7.2 代码 八、坐标转换 8.1 代码 九、树结构 9.1?代码 9.1.1 节点 …

【Research Proposal】基于提示词方法的智能体工具调用研究——研究问题

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯研究问题1. 如何优化提示词方法以提高智能体的工具调用能力?2. 如何解决提示词方法在多模态任务中的挑战?3. 如何通过提示词优化智能体…

Java 大视界 -- 国际竞争与合作:Java 大数据在全球市场的机遇与挑战(94)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…

25旅游管理研究生复试面试问题汇总 旅游管理专业知识问题很全! 旅游管理复试全流程攻略 旅游管理考研复试真题汇总

旅游管理复试很难?! 别怕!经验超丰富的老学姐来给你们出谋划策啦! 最近是不是被旅游管理考研复试折磨得够呛?莫慌!我这有着丰富复试指导经验的老学姐来帮你们排雷,助力大家顺利上岸&#xff01…

美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台

作者:美的楼宇科技事业部 先行研究中心智能技术部 美的楼宇科技 IoT 数据平台建设背景 美的楼宇科技事业部(以下简称楼宇科技)是美的集团旗下五大板块之一,产品覆盖多联机组、大型冷水机组、单元机、机房空调、扶梯、直梯、货梯…

Html5学习教程,从入门到精通,HTML5 元素语法知识点及案例代码(2)

HTML5 元素语法知识点及案例代码 一、HTML5 元素概述 HTML5 元素是构成网页的基本单位&#xff0c;每个元素都有特定的语义和功能。HTML5 元素由开始标签、内容和结束标签组成&#xff0c;例如&#xff1a; <p>这是一个段落。</p><p> 是开始标签这是一个段…

23种设计模式 - 备忘录模式

模式定义 备忘录模式&#xff08;Memento Pattern&#xff09;是一种行为型设计模式&#xff0c;其核心是在不破坏对象封装性的前提下&#xff0c;捕获并保存对象的内部状态&#xff0c;以便后续恢复。该模式特别适用于需要实现撤销/重做、状态回滚等功能的系统&#xff0c;如…

2025asp.net全栈技术开发学习路线图

2025年技术亮点‌&#xff1a; Blazor已全面支持WebAssembly 2.0标准 .NET 8版本原生集成AI模型部署能力 Azure Kubernetes服务实现智能自动扩缩容 EF Core新增向量数据库支持特性 ‌ASP.NET 全栈开发关键技术说明&#xff08;2025年视角&#xff09;‌ 以下技术分类基于现…

Linux设备驱动-练习

练习要求&#xff1a; 一、设备树 1、配置设备树信息&#xff1a;将3个led灯和1个风扇使用到的设备信息配置到设备树中 二、设备驱动层 1、通过of_find_node_by_name、of_get_named_gpion等内核核心层统一的api接口调用外设&#xff1b; 2、通过udev设备管理器自动注册并创建设…

Python应用算法之贪心算法理解和实践

一、什么是贪心算法&#xff1f; 贪心算法&#xff08;Greedy Algorithm&#xff09;是一种简单而高效的算法设计思想&#xff0c;其核心思想是&#xff1a;在每一步选择中&#xff0c;都采取当前状态下最优的选择&#xff08;即“局部最优解”&#xff09;&#xff0c;希望通…

竞争与冒险问题【数电速通】

时序逻辑电路&#xff1a; 组合逻辑电路中的竞争与冒险问题&#xff1a; 在组合逻辑电路中&#xff0c;竞争和冒险是两种常见的时序问题&#xff0c;它们通常由电路的延时特性和不完美的设计引起。下面是这两种现象的详细解释&#xff1a; 1. 竞争&#xff08;Race Condition&…

nasm - BasicWindow_64

文章目录 nasm - BasicWindow_64概述笔记nasm_main.asmmy_build.batEND nasm - BasicWindow_64 概述 学个demo, 这个demo最主要学到了: 不用在调用每个API前都准备阴影区&#xff0c;在API调用后栈平衡。 可以在函数入口处考虑到所用的栈尺寸最大值(16字节对齐&#xff0c;阴…

JavaScript变量的作用域介绍

JavaScript变量的作用域介绍 JavaScript 变量的作用域决定了变量在代码中的可访问性。 var 是 JavaScript 中最早用于声明变量的关键字&#xff0c;它函数作用域或全局作用域。 let 关键字&#xff0c;具有块级作用域、全局作用域。 const关键字&#xff0c;具有块级作用域…

Microsoft 365 Copilot中使用人数最多的是哪些应用

今天在浏览Microsoft 365 admin center时发现&#xff0c;copilot会自动整理过去30天内所有用户使用copilot的概况&#xff1a; 直接把这个图丢给copilot让它去分析&#xff0c;结果如下&#xff1a; 总用户情况 总用户数在各应用中均为 561 人&#xff0c;说明此次统计的样本…

ue5.2.1 quixel brideg显示asset not available in uAsset format

我从未见过如此傻x的bug&#xff0c;在ue5.2.1上通过内置quixel下载资源显示 asset not available in uAsset format 解决办法&#xff1a;将ue更新到最新版本&#xff0c;通过fab进入商场选择资源后add to my library 点击view in launcher打开epic launcher&#xff0c;就可…