BFS算法篇——广度优先搜索,探索未知的旅程(上)

文章目录

  • 前言
  • 一、BFS的思路
  • 二、BFS的C语言实现
    • 1. 图的表示
    • 2. BFS的实现
  • 三、代码解析
  • 四、输出结果
  • 五、总结

在这里插入图片描述

前言

广度优先搜索(BFS)是一种广泛应用于图论中的算法,常用于寻找最短路径、图的遍历等问题。与深度优先搜索(DFS)不同,BFS通过层级地探索节点来确保最先访问的节点距离源点较近,因此它可以用来求解最短路径问题。让我们深入了解这个算法,并通过具体的例子和代码来进一步掌握它的实现。

一、BFS的思路

BFS的主要思想是从起始节点开始,首先访问该节点的所有邻接节点,然后再访问这些邻接节点的邻接节点。BFS利用队列的先进先出(FIFO)特性保证了节点是按层次顺序被访问的。

二、BFS的C语言实现

1. 图的表示

在C语言中,我们常用邻接表来表示图。对于无向图,我们可以使用一个邻接矩阵或者邻接链表。在这里,我们采用邻接链表表示图。

2. BFS的实现

以下是C语言实现BFS算法的具体代码,图使用邻接表表示:

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>#define MAX_NODES 6  // 节点数量// 图的邻接表结构
typedef struct Node {int data;struct Node* next;
} Node;typedef struct Graph {Node* adjList[MAX_NODES];
} Graph;// 队列结构
typedef struct Queue {int items[MAX_NODES];int front, rear;
} Queue;// 创建一个新的图
Graph* createGraph() {Graph* graph = (Graph*)malloc(sizeof(Graph));for (int i = 0; i < MAX_NODES; i++) {graph->adjList[i] = NULL;}return graph;
}// 向图中添加一条边
void addEdge(Graph* graph, int src, int dest) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = dest;newNode->next = graph->adjList[src];graph->adjList[src] = newNode;// 因为是无向图,所以添加反向边newNode = (Node*)malloc(sizeof(Node));newNode->data = src;newNode->next = graph->adjList[dest];graph->adjList[dest] = newNode;
}// 初始化队列
void initQueue(Queue* q) {q->front = -1;q->rear = -1;
}// 入队
void enqueue(Queue* q, int value) {if (q->rear == MAX_NODES - 1) {printf("队列已满\n");return;}if (q->front == -1) {q->front = 0;}q->rear++;q->items[q->rear] = value;
}// 出队
int dequeue(Queue* q) {if (q->front == -1) {printf("队列为空\n");return -1;}int item = q->items[q->front];q->front++;if (q->front > q->rear) {q->front = q->rear = -1;}return item;
}// 判断队列是否为空
bool isQueueEmpty(Queue* q) {return q->front == -1;
}// 广度优先搜索BFS
void bfs(Graph* graph, int start) {bool visited[MAX_NODES] = {false};  // 访问标志数组Queue q;initQueue(&q);// 标记起始节点为已访问,并入队visited[start] = true;enqueue(&q, start);while (!isQueueEmpty(&q)) {// 出队并访问节点int node = dequeue(&q);printf("%c ", node + 'A');  // 输出节点(假设节点是字母A, B, C...)// 遍历当前节点的所有邻接节点Node* temp = graph->adjList[node];while (temp) {int adjNode = temp->data;if (!visited[adjNode]) {visited[adjNode] = true;enqueue(&q, adjNode);}temp = temp->next;}}
}int main() {// 创建图并添加边Graph* graph = createGraph();addEdge(graph, 0, 1);  // A - BaddEdge(graph, 0, 2);  // A - CaddEdge(graph, 1, 3);  // B - DaddEdge(graph, 1, 4);  // B - EaddEdge(graph, 2, 4);  // C - EaddEdge(graph, 3, 5);  // D - FaddEdge(graph, 4, 5);  // E - F// 执行BFS从节点A(索引0)开始printf("BFS遍历结果: ");bfs(graph, 0);// 释放内存free(graph);return 0;
}

三、代码解析

图的表示:

  • 图使用邻接表表示。每个节点用一个链表来存储与其直接相连的节点。Graph结构体中有一个数组 adjList 来保存所有节点的邻接链表。

队列的实现:

  • 队列用数组来实现,包含 front 和 rear 来管理队列的操作。队列用于按顺序访问图的每个节点。

BFS的实现:

  • 使用队列来管理待访问的节点。首先将起始节点标记为已访问并入队。然后逐步出队并访问节点,访问节点的邻接节点,如果邻接节点未被访问,则将其标记为已访问并入队。
  • 输出遍历的节点(假设节点为字母,如 A, B, C, …)。

四、输出结果

假设图的结构如下所示:

    A -- B -- D|    |    |C -- E -- F

输出结果将为:

BFS遍历结果: A B C D E F 

这意味着从节点 A 开始,BFS按层次遍历的顺序访问了图中的所有节点。

五、总结

  • BFS是一种通过逐层扩展来遍历图的算法,通常用于求解最短路径问题、图的遍历等。
  • 在C语言中,BFS通常使用队列来实现,队列的先进先出特性确保了图的层次遍历。
  • 本例中通过邻接表表示图,使用队列来实现BFS遍历,从而找到节点间的最短路径。
  • 广度优先搜索在实际问题中具有广泛的应用,例如在社交网络分析、路径规划等方面,都可以发挥其强大的作用。

本篇关于BFS算法篇的介绍就暂告段落啦,希望能对大家的学习产生帮助,欢迎各位佬前来支持斧正!!!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894910.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决使用python提取word文档中所有的图片时图片丢失的问题

python解析word文档&#xff0c;提取文档中所有的图片并保存&#xff0c;并将原图位置用占位符替换。 问题描述 利用python-dox库解析word文档&#xff0c;并提取里面的所有图片时发现会出现一摸一样的图片只解析一次&#xff0c;导致图片丢失&#xff0c;数量不对的情况。 …

Swipe横滑与SwipeItem自定义横滑相互影响

背景 vue项目&#xff0c;H5页面&#xff0c;使用vant的组件库轮播组件<Swipe>&#xff0c;UI交互要求&#xff0c;在每个SwipeItem中有内容&#xff0c;可自横滑&#xff0c;查看列表内容 核心代码 <template><Swipeclass"my_swipe":autoplay&quo…

3. 【.NET Aspire 从入门到实战】--理论入门与环境搭建--环境搭建

构建现代云原生应用程序时&#xff0c;开发环境的搭建至关重要。NET Aspire 作为一款专为云原生应用设计的开发框架&#xff0c;提供了一整套工具、模板和集成包&#xff0c;旨在简化分布式系统的构建和管理。开始项目初始化之前&#xff0c;确保开发环境的正确配置是成功的第一…

蓝耘智算平台使用DeepSeek教程

目录 一.平台架构与技术特点 二、DeepSeek R1模型介绍与优势 DeepSeek R1 模型简介 DeepSeek R1 模型优势 三.蓝耘智算平台使用DeepSeek教程 展望未来 耘元生代智算云是蓝耘科技推出的一款智算云平台有着以下特点&#xff1a; 一.平台架构与技术特点 基于 Kubernetes 原…

.net的一些知识点6

1.写个Lazy<T>的单例模式 public class SingleInstance{private static readonly Lazy<SingleInstance> instance new Lazy<SingleInstance>(() > new SingleInstance());private SingleInstance(){}public static SingleInstance Instace > instance…

1Panel应用推荐:WordPress开源博客软件和内容管理系统

1Panel&#xff08;github.com/1Panel-dev/1Panel&#xff09;是一款现代化、开源的Linux服务器运维管理面板&#xff0c;它致力于通过开源的方式&#xff0c;帮助用户简化建站与运维管理流程。为了方便广大用户快捷安装部署相关软件应用&#xff0c;1Panel特别开通应用商店&am…

前端开发架构师Prompt指令的最佳实践

前端开发架构师Prompt 提示词可作为系统提示词使用&#xff0c;可基于用户的需求输出对应的编码方案。 本次提示词偏向前端开发的使用&#xff0c;如有需要可适当修改关键词和示例。 推荐使用 Cursor 中作为自定义指令使用Cline 插件中作为自定义指令使用在力所能及的范围内使…

Linux在x86环境下制作ARM镜像包

在x86环境下制作ARM镜像包&#xff08;如qemu.docker&#xff09;&#xff0c;可以通过QEMU和Docker的结合来实现。以下是详细的步骤&#xff1a; 安装QEMU-user-static QEMU-user-static是一个静态编译的QEMU二进制文件&#xff0c;用于在非目标架构上运行目标架构的二进制文…

基于STM32设计的仓库环境监测与预警系统

目录 项目开发背景设计实现的功能项目硬件模块组成设计思路系统功能总结使用的模块的技术详情介绍总结 1. 项目开发背景 随着工业化和现代化的进程&#xff0c;尤其是在制造业、食品业、医药业等行业&#xff0c;仓库环境的监控和管理成为了至关重要的一环。尤其是在存储易腐…

Redis主从同步流程?

目录 1. 建立连接 2. 全量同步(Full Sync) 3. 部分同步(Partial Sync) 4. 持续同步 5. 心跳检测 6. 复制偏移量(Replication Offset) 7. 复制积压缓冲区(Replication Backlog) 总结 Redis 主从同步 是通过复制(replication)实现的,主节点(master)将数据同…

PbootCMS 修改跳转提示,修改笑脸时间

在使用时&#xff0c;每次都提示这个&#xff1a; 修改方法&#xff1a; 修改跳转时间&#xff1a;找到 handle.php 文件编辑 &#xff0c;调整 setTimeout 函数的时间参数。 修改提示文字&#xff1a;编辑 handle.php 文件&#xff0c;修改提示文字的内容。 隐藏提示页面&am…

三星手机为何不大力扩展中国市场?

三星在中国市场的手机销量长期低迷&#xff0c;主要原因可以归结为以下几点&#xff0c;这也解释了为什么三星可能没有大力扩展中国市场的计划&#xff1a; 1. 市场竞争激烈 中国市场已经被华为、OPPO、vivo、小米和苹果等品牌牢牢占据&#xff0c;这些品牌在产品设计、本地化…

Elasticsearch:向量搜索的快速介绍

作者&#xff1a;来自 Elastic Valentin Crettaz 本文是三篇系列文章中的第一篇&#xff0c;将深入探讨向量搜索&#xff08;也称为语义搜索&#xff09;的复杂性&#xff0c;以及它在 Elasticsearch 中的实现方式。 本文是三篇系列文章中的第一篇&#xff0c;将深入探讨向量搜…

kaggle视频行为分析1st and Future - Player Contact Detection

这次比赛的目标是检测美式橄榄球NFL比赛中球员经历的外部接触。您将使用视频和球员追踪数据来识别发生接触的时刻&#xff0c;以帮助提高球员的安全。两种接触&#xff0c;一种是人与人的&#xff0c;另一种是人与地面&#xff0c;不包括脚底和地面的&#xff0c;跟我之前做的这…

低成本训练的突破与争议:DeepSeek R1模型的新进展

摘要 近日&#xff0c;李飞飞团队宣称以50美元成本训练出性能超越o1/R1的DeepSeek R1模型&#xff0c;此说法引发广泛质疑。与此同时&#xff0c;上海交通大学本科生提出一种新的低成本推理方法&#xff0c;可能成为新热门选择。有观点认为&#xff0c;若认可50美元能训练出更优…

Sentinel的安装和做限流的使用

一、安装 Release v1.8.3 alibaba/Sentinel GitHubA powerful flow control component enabling reliability, resilience and monitoring for microservices. (面向云原生微服务的高可用流控防护组件) - Release v1.8.3 alibaba/Sentinelhttps://github.com/alibaba/Senti…

“AI隐患识别系统,安全多了道“智能护盾”

家人们&#xff0c;在生活和工作里&#xff0c;咱们都知道安全那可是头等大事。不管是走在马路上&#xff0c;还是在工厂车间忙碌&#xff0c;又或是住在高楼大厦里&#xff0c;身边都可能藏着一些安全隐患。以前&#xff0c;发现这些隐患大多靠咱们的眼睛和经验&#xff0c;可…

《手札·避坑篇》信息化和数字化的本质区别

信息化与数字化&#xff1a;轴承贸易公司的转型之路 在当今商业环境中&#xff0c;信息化和数字化是企业转型的两个热门词汇。但对于很多外行人来说&#xff0c;这两个概念可能容易混淆。本文将从轴承贸易公司的角度&#xff0c;结合真实案例和数据&#xff0c;分析信息化与数字…

基于DeepSeek API和VSCode的自动化网页生成流程

1.创建API key 访问官网DeepSeek &#xff0c;点击API开放平台。 在开放平台界面左侧点击API keys&#xff0c;进入API keys管理界面&#xff0c;点击创建API key按钮创建API key&#xff0c;名称自定义。 2.下载并安装配置编辑器VSCode 官网Visual Studio Code - Code Editing…

SolidWorks教程P2.2【草图 | 第二节】——草图几何关系与编辑

草图几何关系包括&#xff1a;重合、中点、相切、平行、相等、共线、对称 草图编辑功能包括&#xff1a;裁剪实体、转换实体引用、等距实体 目录 1.草图几何关系 2.裁剪实体 3.转换实体引用 4.等距实体 补充知识&#xff1a;智能尺寸 1.草图几何关系 在之前的草图介绍里…