OpenGL学习笔记(五):Textures 纹理

文章目录

  • 纹理坐标
  • 纹理环绕方式
  • 纹理过滤——处理纹理分辨率低的情况
  • 多级渐远纹理Mipmap——处理纹理分辨率高的情况
  • 加载与创建纹理 ( <stb_image.h> )
  • 生成纹理
  • 应用纹理
  • 纹理单元
  • 练习1
  • 练习2
  • 练习3
  • 练习4


通过上一篇着色部分的学习,我们可以为每个顶点添加颜色来增加图形的细节,从而创建出有趣的图像。当需要给图形赋予真实颜色的时候,不大可能为每一个顶点指定一个颜色,通常会采用纹理贴图。

本篇开始学习使用纹理(Texture)来添加物体的细节。我们要做的工作是告诉OpenGL该怎样对纹理采样。

纹理相关原理参考:GAMES101学习笔记(五):Texture 纹理(纹理映射、重心坐标、纹理贴图)

纹理坐标

为了能够把纹理映射(Map)到三角形上,我们需要指定三角形的每个顶点各自对应纹理的哪个部分。

每个顶点就会关联着一个纹理坐标(Texture Coordinate),用来标明该从纹理图像的哪个部分采样(采集片段颜色)。之后在图形的其它片段上进行片段插值(Fragment Interpolation)。

纹理坐标在x和y轴上,范围为0到1之间(2D纹理图像)。使用纹理坐标获取纹理颜色叫做采样(Sampling)。
纹理坐标的原点(0, 0)在纹理图片的左下角,终止于(1, 1),即纹理图片的右上角。

float texCoords[] = {0.0f, 0.0f, // 左下角1.0f, 0.0f, // 右下角0.5f, 1.0f  // 上中
};

下面的图片展示了如何把纹理坐标映射到三角形上的:
在这里插入图片描述
顶点结构将更新为如下:

float vertices[] = {// positions        // colors			// texCoords0.5f, -0.5f, 0.0f,  1.0f, 0.0f, 0.0f,  0.0f, 0.0f,		// bottom right-0.5f, -0.5f, 0.0f,  0.0f, 1.0f, 0.0f,  1.0f, 0.0f,		// bottom left0.0f,  0.5f, 0.0f,  0.0f, 0.0f, 1.0f,  0.5f, 1.0f   	// top 
};

由于我们添加了一个额外的顶点属性,我们必须告诉OpenGL我们新的顶点格式:
在这里插入图片描述

纹理环绕方式

纹理坐标的范围通常是从(0, 0)到(1, 1),那如果纹理坐标设置在范围之外会发生什么?
OpenGL默认的行为是重复这个纹理图像(我们基本上忽略浮点纹理坐标的整数部分)OpenGL也提供了更多的选择

环绕方式描述
GL_REPEAT对纹理的默认行为。重复纹理图像。
GL_MIRRORED_REPEATGL_REPEAT一样,但每次重复图片是镜像放置的。
GL_CLAMP_TO_EDGE纹理坐标会被约束在0到1之间,超出的部分会重复纹理坐标的边缘,产生一种边缘被拉伸的效果。
GL_CLAMP_TO_BORDER超出的坐标为用户指定的边缘颜色。

当纹理坐标超出默认范围时,每个选项都有不同的视觉效果输出:
在这里插入图片描述
可以使用glTexParameter函数对单独的一个坐标轴设置(st(如果是使用3D纹理那么还有一个r)它们和xyz是等价的):

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
  • 第一个参数指定了纹理目标;我们使用的是2D纹理,因此纹理目标是GL_TEXTURE_2D
  • 第二个参数需要我们指定设置的选项与应用的纹理轴。我们打算配置的是WRAP选项,并且指定S和T轴。
  • 最后一个参数需要我们传递一个环绕方式(Wrapping),即上面表格中的4种方式。

如果我们选择GL_CLAMP_TO_BORDER选项,我们还需要指定一个边缘的颜色。这需要使用glTexParameter函数的fv后缀形式:

float borderColor[] = { 1.0f, 1.0f, 0.0f, 1.0f };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);

纹理过滤——处理纹理分辨率低的情况

OpenGL需要知道怎样将纹理像素(Texture Pixel,也叫Texel)映射到纹理坐标。但

  • 纹理坐标的精度是无限的,可以是任意浮点值。(纹理坐标不依赖于分辨率Resolution)
  • 纹理像素是有限的(图片分辨率)

当物体很大但是纹理的分辨率很低的时候,就会出现锯齿现象。
在GAMES101课程中我们了解了双线性插值和双三次插值的方式来做抗锯齿。

OpenGL有对于纹理过滤(Texture Filtering)的选项。纹理过滤有很多个选项,但是现在我们只讨论最重要的两种:

  • GL_NEAREST(也叫邻近过滤,Nearest Neighbor Filtering)
    OpenGL默认的纹理过滤方式。当设置为GL_NEAREST的时候,OpenGL会选择中心点最接近纹理坐标的那个像素。

  • GL_LINEAR(也叫线性过滤,(Bi)linear Filtering)
    它会基于纹理坐标附近的纹理像素,计算出一个插值,近似出这些纹理像素之间的颜色。一个纹理像素的中心距离纹理坐标越近,那么这个纹理像素的颜色对最终的样本颜色的贡献越大。

  • GL_LINEAR可以产生更真实的输出,但有些开发者更喜欢8-bit风格,所以他们会用GL_NEAREST选项

当进行放大(Magnify)和缩小(Minify)操作的时候可以设置纹理过滤的选项,比如你可以在纹理被缩小的时候使用邻近过滤,被放大时使用线性过滤。我们需要使用glTexParameter函数为放大和缩小指定过滤方式。这段代码看起来会和纹理环绕方式的设置很相似:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

多级渐远纹理Mipmap——处理纹理分辨率高的情况

想象一下,假设我们有一个包含着上千物体的大房间,每个物体上都有纹理。有些物体会很远,但其纹理会拥有与近处物体同样高的分辨率。由于远处的物体可能只产生很少的片段,OpenGL从高分辨率纹理中为这些片段获取正确的颜色值就很困难,因为它需要对一个跨过纹理很大部分的片段只拾取一个纹理颜色。在小物体上这会产生不真实的感觉,更不用说对它们使用高分辨率纹理浪费内存的问题了。

OpenGL使用一种叫做 多级渐远纹理(Mipmap) 的概念来解决这个问题,它简单来说就是一系列的纹理图像,后一个纹理图像是前一个的二分之一。多级渐远纹理背后的理念很简单:距观察者的距离超过一定的阈值,OpenGL会使用不同的多级渐远纹理,即最适合物体的距离的那个。由于距离远,解析度不高也不会被用户注意到。同时,多级渐远纹理另一加分之处是它的性能非常好。让我们看一下多级渐远纹理是什么样子的:

在这里插入图片描述
使用glGenerateMipmap函数,在创建完一个纹理后调用它OpenGL就会生成Mipmap。后面的教程中会看到该如何使用它。

在渲染中切换多级渐远纹理级别(Level)时,OpenGL在两个不同级别的多级渐远纹理层之间会产生不真实的生硬边界。就像普通的纹理过滤一样,切换多级渐远纹理级别时你也可以在两个不同多级渐远纹理级别之间使用NEARESTLINEAR过滤。为了指定不同多级渐远纹理级别之间的过滤方式,可以使用下面四个选项中的一个代替原有的过滤方式:

过滤方式描述
GL_NEAREST_MIPMAP_NEAREST使用最邻近的多级渐远纹理来匹配像素大小,并使用邻近插值进行纹理采样
GL_LINEAR_MIPMAP_NEAREST使用最邻近的多级渐远纹理级别,并使用线性插值进行采样
GL_NEAREST_MIPMAP_LINEAR在两个最匹配像素大小的多级渐远纹理之间进行线性插值,使用邻近插值进行采样
GL_LINEAR_MIPMAP_LINEAR在两个邻近的多级渐远纹理之间使用线性插值,并使用线性插值进行采样

就像纹理过滤一样,我们可以使用glTexParameteri将过滤方式设置为前面四种提到的方法之一:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

一个常见的错误是,将放大过滤的选项设置为多级渐远纹理过滤选项之一。这样没有任何效果
因为多级渐远纹理主要是使用在纹理被缩小的情况下的,纹理放大不会使用多级渐远纹理
为放大过滤设置多级渐远纹理的选项会产生一个GL_INVALID_ENUM错误代码。

加载与创建纹理 ( <stb_image.h> )

接下来我们加载本地图片在OpenGL中创建纹理,这里我们使用一个支持多种流行格式的图像加载库stb_image.h库。

stb_image.h是Sean Barrett的一个非常流行的单头文件图像加载库,它能够加载大部分流行的文件格式,并且能够很简单得整合到你的工程之中。stb_image.h可以在这里下载。

在工程中包含该库时,需要定义宏:

#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

使用stb_image.hstbi_load函数加载一张木箱的图片:

int width, height, nrChannels;
unsigned char *data = stbi_load("container.jpg", &width, &height, &nrChannels, 0);

stbi_load函数原型:

unsigned char *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp)

首先接受一个图像文件的路径作为输入。接下来它需要三个int作为它的第二、第三和第四个参数,stb_image.h将会用图像的宽度高度颜色通道的个数填充这三个变量。我们之后生成纹理的时候会用到的图像的宽度和高度。

生成纹理

和之前生成的其他OpenGL对象一样,纹理也是使用ID引用的。

使用glGenTextures创建纹理:

unsigned int texture;
glGenTextures(1, &texture);
  • 第一个参数:生成纹理的数量
  • 第二个参数:一个unsigned int数组,用于存储指定数量的纹理

像其他对象一样,我们需要绑定它,让之后任何的纹理指令都可以配置当前绑定的纹理:

glBindTexture(GL_TEXTURE_2D, texture);

纹理绑定之后,我们可以使用前面载入的图片数据生成一个纹理了。

通过glTexImage2D来生成:

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
stbi_image_free(data);
  • 第一个参数指定了纹理目标(Target)
    设置为GL_TEXTURE_2D意味着会生成与当前绑定的纹理对象在同一个目标上的纹理(任何绑定到GL_TEXTURE_1DGL_TEXTURE_3D的纹理不会受到影响)。
  • 第二个参数为纹理指定多级渐远纹理的级别,如果你希望单独手动设置每个多级渐远纹理的级别的话。这里我们填0,也就是基本级别。
  • 第三个参数指定纹理储存格式。我们的图像只有RGB值,因此我们也把纹理储存为RGB值。
  • 第四个参数指定最终的纹理的宽度。
  • 第五个参数指定最终的纹理的高度。
  • 第六个参数应该总是被设为0(历史遗留的问题)
  • 第七个参数定义了源图的格式。使用RGB值加载这个图像
  • 第八个参数定义了源图的数据类型。把它们储存为char(byte)数组,我们将会传入对应值。
  • 最后一个参数是真正的图像数据。

当调用glTexImage2D时,当前绑定的纹理对象就会被附加上纹理图像数据。目前只加载基本级别(Base-level)的纹理图像。
如果要使用多级渐远纹理,在生成纹理之后还要调用glGenerateMipmap,这会为当前绑定的纹理自动生成所有需要的多级渐远纹理。
绑定好纹理之后,就可以使用stbi_image_free释放图像内存了。


生成一个纹理的完整过程:

unsigned int texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
// 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);   
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// 加载并生成纹理
int width, height, nrChannels;
unsigned char *data = stbi_load("container.jpg", &width, &height, &nrChannels, 0);
if (data)
{glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);
}
else
{std::cout << "Failed to load texture" << std::endl;
}
stbi_image_free(data);

应用纹理

接下来,我们会使用之前绘制的矩形来应用纹理,更新顶点数据:

float vertices[] = {
//    ---- 位置 ----       ---- 颜色 ----     - 纹理坐标 -0.5f,  0.5f, 0.0f,   1.0f, 0.0f, 0.0f,   1.0f, 1.0f,   // 右上0.5f, -0.5f, 0.0f,   0.0f, 1.0f, 0.0f,   1.0f, 0.0f,   // 右下-0.5f, -0.5f, 0.0f,   0.0f, 0.0f, 1.0f,   0.0f, 0.0f,   // 左下-0.5f,  0.5f, 0.0f,   1.0f, 1.0f, 0.0f,   0.0f, 1.0f    // 左上
};

由于我们添加了一个额外的顶点属性,我们必须告诉OpenGL我们新的顶点格式:

glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
glEnableVertexAttribArray(2);

在这里插入图片描述

注意,我们同样需要调整前面两个顶点属性的步长参数为8 * sizeof(float)


调整顶点着色器,使其能够接受顶点坐标aTexCoord为一个顶点属性,并把坐标传给片段着色器:

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord;out vec3 ourColor;
out vec2 TexCoord;void main()
{gl_Position = vec4(aPos, 1.0);ourColor = aColor;TexCoord = aTexCoord;
}

调整片段着色器,把输出变量TexCoord作为输入变量。

片段着色器也应该能访问纹理对象,但是我们怎样能把纹理对象传给片段着色器呢?

GLSL有一个供纹理对象使用的内建数据类型,叫做采样器(Sampler),它以纹理类型作为后缀,比如sampler1D、sampler3D,或在我们的例子中的sampler2D。我们可以简单声明一个uniform sampler2D把一个纹理添加到片段着色器中,稍后我们会把纹理赋值给这个uniform。

#version 330 core
out vec4 FragColor;in vec3 ourColor;
in vec2 TexCoord;uniform sampler2D ourTexture;void main()
{FragColor = texture(ourTexture, TexCoord);
}

使用GLSL内建的texture函数来采样纹理的颜色,它第一个参数是纹理采样器,第二个参数是对应的纹理坐标texture函数会使用之前设置的纹理参数对相应的颜色值进行采样。这个片段着色器的输出就是纹理的(插值)纹理坐标上的(过滤后的)颜色。


现在只剩下在调用glDrawElements之前绑定纹理了,它会自动把纹理赋值给片段着色器的采样器:

glBindTexture(GL_TEXTURE_2D, texture);
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);

效果如下图: (完整源码参考)

在这里插入图片描述

纹理单元

sampler2D变量是个uniform,但我们没有用glUniform给它赋值。
实际上可以使用glUniform1i给纹理采样器分配一个位置值,这样的话我们能够在一个片段着色器中设置多个纹理。
一个纹理的这个位置值通常称为一个纹理单元(Texture Unit)

纹理的默认纹理单元是0(默认的激活状态),所以前面部分我们没有分配一个位置值。但并非所有图形驱动程序都指定了默认纹理单元。

纹理单元的主要目的是让我们在着色器中可以使用多于一个的纹理。通过把纹理单元赋值给采样器,我们可以一次绑定多个纹理,只要我们首先激活对应的纹理单元。就像glBindTexture一样,我们可以使用glActiveTexture激活纹理单元,传入我们需要使用的纹理单元:

glActiveTexture(GL_TEXTURE0); // 在绑定纹理之前先激活纹理单元
glBindTexture(GL_TEXTURE_2D, texture);

激活纹理单元之后,接下来的glBindTexture函数调用会绑定这个纹理到当前激活的纹理单元,纹理单元GL_TEXTURE0默认总是被激活,所以我们在前面的例子里当我们使用glBindTexture的时候,无需激活任何纹理单元。但当我们想要应用多个纹理时,就要先激活对应的纹理单元,

OpenGL至少保证有16个纹理单元供你使用,也就是说你可以激活从GL_TEXTURE0GL_TEXTRUE15。它们都是按顺序定义的,所以我们也可以通过GL_TEXTURE0 + 8的方式获得GL_TEXTURE8,这在当我们需要循环一些纹理单元的时候会很有用。


编辑片段着色器来接收另一个采样器,最终输出颜色是两个纹理的结合:

#version 330 core
out vec4 FragColor;in vec3 ourColor;
in vec2 TexCoord;uniform sampler2D texture1;
uniform sampler2D texture2;void main()
{FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);
}

GLSL内建的mix函数需要接受两个值作为参数,并对它们根据第三个参数进行线性插值。如果第三个值是0.0,它会返回第一个输入;如果是1.0,会返回第二个输入值。0.2会返回80%的第一个输入颜色和20%的第二个输入颜色,即返回两个纹理的混合色。


现在载入并创建另一个纹理,第二个纹理我们使用一张笑脸表情图片:

unsigned char *data = stbi_load("awesomeface.png", &width, &height, &nrChannels, 0);
if (data)
{glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);
}

注意,我们现在要读取一张包含alpha(透明度)通道的.png图片,这意味着我们现在需要使用GL_RGBA参数,指定该图片数据包含了alpha通道;否则OpenGL将无法正确解析图片数据。

为了使用第二个纹理(以及第一个),我们必须改变一点渲染流程:

  • 先绑定两个纹理到对应的纹理单元
  • 然后定义哪个uniform采样器对应哪个纹理单元:
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture1);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, texture2);glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);

我们还要通过使用glUniform1i设置每个采样器的方式告诉OpenGL每个着色器采样器属于哪个纹理单元。我们只需要设置一次即可,所以这个会放在渲染循环的前面:

ourShader.use(); // 不要忘记在设置uniform变量之前激活着色器程序!
glUniform1i(glGetUniformLocation(ourShader.ID, "texture1"), 0); // 手动设置
ourShader.setInt("texture2", 1); // 或者使用着色器类设置while(...) 
{[...]
}

通过使用glUniform1i设置采样器,我们保证了每个uniform采样器对应着正确的纹理单元。你应该能得到下面的结果:
在这里插入图片描述
纹理上下颠倒了!这是因为OpenGL要求y轴0.0坐标是在图片的底部的,但是图片的y轴0.0坐标通常在顶部
stb_image.h能够在图像加载时帮助我们翻转y轴,只需要在加载任何图像前加入以下语句即可:

stbi_set_flip_vertically_on_load(true);

(完整代码参考)

在这里插入图片描述

练习1

修改片段着色器,仅让笑脸图案朝另一个方向看

//FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);// 修改片段着色器,仅让笑脸图案朝另一个方向看
FragColor = mix(texture(texture1, TexCoord), texture(texture2, vec2(1.0 - TexCoord.x, TexCoord.y)), 0.2);
}

在这里插入图片描述

练习2

尝试用不同的纹理环绕方式,设定一个从0.0f到2.0f范围内的(而不是原来的0.0f到1.0f)纹理坐标。
试试看能不能在箱子的角落放置4个笑脸:参考解答

在这里插入图片描述

在这里插入图片描述

练习3

尝试在矩形上只显示纹理图像的中间一部分,修改纹理坐标,达到能看见单个的像素的效果。尝试使用GL_NEAREST的纹理过滤方式让像素显示得更清晰:参考解答

在这里插入图片描述

练习4

使用一个uniform变量作为mix函数的第三个参数来改变两个纹理可见度,使用上和下键来改变箱子或笑脸的可见度:参考解答

处理键盘输入:

void processInput(GLFWwindow *window)
{if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)glfwSetWindowShouldClose(window, true);if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS){mixValue += 0.001f; // change this value accordingly (might be too slow or too fast based on system hardware)if(mixValue >= 1.0f)mixValue = 1.0f;}if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS){mixValue -= 0.001f; // change this value accordingly (might be too slow or too fast based on system hardware)if (mixValue <= 0.0f)mixValue = 0.0f;}
}

修改片段着色器:

#version 330 core
out vec4 FragColor;in vec3 ourColor;
in vec2 TexCoord;uniform float mixValue;// texture samplers
uniform sampler2D texture1;
uniform sampler2D texture2;void main()
{// linearly interpolate between both texturesFragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), mixValue);
}

在渲染循环中,实时修改mixValue的值

ourShader.setFloat("mixValue", mixValue);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894418.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代理模式——C++实现

目录 1. 代理模式简介 2. 代码示例 1. 代理模式简介 代理模式是一种行为型模式。 代理模式的定义&#xff1a;由于某些原因需要给某对象提供一个代理以控制该对象的访问。这时&#xff0c;访问对象不适合或者不能直接访问引用目标对象&#xff0c;代理对象作为访问对象和目标…

Vue3 表单:全面解析与最佳实践

Vue3 表单&#xff1a;全面解析与最佳实践 引言 随着前端技术的发展&#xff0c;Vue.js 已经成为最受欢迎的前端框架之一。Vue3 作为 Vue.js 的最新版本&#xff0c;带来了许多改进和新的特性。其中&#xff0c;表单处理是 Vue 应用中不可或缺的一部分。本文将全面解析 Vue3 …

C++11新特性之范围for循环

1.介绍 C11标准之前&#xff0c;使用for循环遍历数组或容器&#xff0c;只能使用以下结构&#xff1a; for&#xff08;表达式1&#xff1b;表达式2&#xff1b;表达式3&#xff09;{ 循环体 } 那么在C11标准中&#xff0c;除了上面的方法外&#xff0c;又引入了一种全新的语…

攻防世界 fileclude

代码审计 WRONG WAY! <?php include("flag.php"); highlight_file(__FILE__);//高亮显示文件的源代码 if(isset($_GET["file1"]) && isset($_GET["file2"]))//检查file1和file2参数是否存在 {$file1 $_GET["file1"];$fi…

图书管理系统 Axios 源码__获取图书列表

目录 核心功能 源码介绍 1. 获取图书列表 技术要点 适用人群 本项目是一个基于 HTML Bootstrap JavaScript Axios 开发的图书管理系统&#xff0c;可用于 添加、编辑、删除和管理图书信息&#xff0c;适合前端开发者学习 前端交互设计、Axios 数据请求 以及 Bootstrap 样…

Vue 响应式渲染 - 列表布局和v-html

Vue 渐进式JavaScript 框架 基于Vue2的学习笔记 - Vue 响应式渲染 - 列表布局和v-html 目录 列表布局 简单渲染列表 显示索引值 点击变色 V-html 作用 注意 采用策略 应用 总结 列表布局 简单渲染列表 Data中设置状态&#xff0c;是一个数组格式的默认信息。 然后…

如何实现一个CLI命令行功能 | python 小知识

如何实现一个CLI命令行功能 | python 小知识 在现代软件开发中&#xff0c;命令行界面&#xff08;CLI&#xff09;的设计与交互至关重要。Click是一个强大的Python库&#xff0c;专门用于快速创建命令行界面&#xff0c;以其简单易用性和丰富的功能赢得了开发者的青睐。本文将…

[SAP ABAP] Debug Skill

SAP ABAP Debug相关资料 [SAP ABAP] DEBUG ABAP程序中的循环语句 [SAP ABAP] 静态断点的使用 [SAP ABAP] 在ABAP Debugger调试器中设置断点 [SAP ABAP] SE11 / SE16N 修改标准表(慎用)

kamailio-Core 说明书 版本:Kamailio SIP Server v6.0.x(稳定版)

Core 说明书 版本&#xff1a;Kamailio SIP Server v6.0.x&#xff08;稳定版&#xff09; 概述 本教程收集了 Kamailio 导出的函数和参数 core 添加到配置文件中。 注意&#xff1a;此页面上的参数不按字母顺序排列。 结构 kamailio.cfg 的结构可以看作是三个部分&#xff…

.Net / C# 繁体中文 与 简体中文 互相转换, 支持地方特色词汇

版本号 Nuget 搜索 “OpenCCNET”, 注意别找错, 好多库的名字都差不多 支持 “繁,简” 的互相转换, 支持多个地区常用词汇的转换, 还支持 日文的新旧转换. OpenCC 在 .Net 中的实现 https://github.com/CosineG/OpenCC.NET <PackageReference Include"OpenCCNET"…

Redis脑裂问题详解及解决方案

Redis是一种高性能的内存数据库&#xff0c;广泛应用于缓存、消息队列等场景。然而&#xff0c;在分布式Redis集群中&#xff0c;脑裂问题&#xff08;Split-Brain&#xff09;是一个需要特别关注的复杂问题。本文将详细介绍Redis脑裂问题的成因、影响及解决方案。 一、什么是…

LLMs之OpenAI o系列:OpenAI o3-mini的简介、安装和使用方法、案例应用之详细攻略

LLMs之OpenAI o系列&#xff1a;OpenAI o3-mini的简介、安装和使用方法、案例应用之详细攻略 目录 相关文章 LLMs之o3&#xff1a;《Deliberative Alignment: Reasoning Enables Safer Language Models》翻译与解读 LLMs之OpenAI o系列&#xff1a;OpenAI o3-mini的简介、安…

女生年薪12万,算不算属于高收入人群

在繁华喧嚣的都市中&#xff0c;我们时常会听到关于收入、高薪与生活质量等话题的讨论。尤其是对于年轻女性而言&#xff0c;薪资水平不仅关乎个人价值的体现&#xff0c;更直接影响到生活质量与未来的规划。那么&#xff0c;女生年薪12万&#xff0c;是否可以被划入高收入人群…

AI开发学习之——PyTorch框架

PyTorch 简介 PyTorch &#xff08;Python torch&#xff09;是由 Facebook AI 研究团队开发的开源机器学习库&#xff0c;广泛应用于深度学习研究和生产。它以动态计算图和易用性著称&#xff0c;支持 GPU 加速计算&#xff0c;并提供丰富的工具和模块。 PyTorch的主要特点 …

Python安居客二手小区数据爬取(2025年)

目录 2025年安居客二手小区数据爬取观察目标网页观察详情页数据准备工作&#xff1a;安装装备就像打游戏代码详解&#xff1a;每行代码都是你的小兵完整代码大放送爬取结果 2025年安居客二手小区数据爬取 这段时间需要爬取安居客二手小区数据&#xff0c;看了一下相关教程基本…

OpenCV:开运算

目录 1. 简述 2. 用腐蚀和膨胀实现开运算 2.1 代码示例 2.2 运行结果 3. 开运算接口 3.1 参数详解 3.2 代码示例 3.3 运行结果 4. 开运算应用场景 5. 注意事项 6. 总结 相关阅读 OpenCV&#xff1a;图像的腐蚀与膨胀-CSDN博客 OpenCV&#xff1a;闭运算-CSDN博客 …

JavaWeb入门-请求响应(Day3)

(一)请求响应概述 请求(HttpServletRequest):获取请求数据 响应(HttpServletResponse):设置响应数据 BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器就可访问,应用程序的逻辑和数据都存储在服务端(维护方便,响应速度一般) CS架构:Client/ser…

【SLAM】于AutoDL云上GPU运行GCNv2_SLAM的记录

配置GCNv2_SLAM所需环境并实现AutoDL云端运行项目的全过程记录。 本文首发于❄慕雪的寒舍 1. 引子 前几天写了一篇在本地虚拟机里面CPU运行GCNv2_SLAM项目的博客&#xff1a;链接&#xff0c;关于GCNv2_SLAM项目相关的介绍请移步此文章&#xff0c;本文不再重复说明。 GCNv2:…

罗格斯大学:通过输入嵌入对齐选择agent

&#x1f4d6;标题&#xff1a;AgentRec: Agent Recommendation Using Sentence Embeddings Aligned to Human Feedback &#x1f310;来源&#xff1a;arXiv, 2501.13333 &#x1f31f;摘要 &#x1f538;多代理系统必须决定哪个代理最适合给定的任务。我们提出了一种新的架…

【实战篇】Android安卓本地离线实现视频检测人脸

实战篇Android安卓本地离线实现视频检测人脸 引言项目概述核心代码类介绍人脸检测流程项目地址总结 引言 在当今数字化时代&#xff0c;人脸识别技术已经广泛应用于各个领域&#xff0c;如安防监控、门禁系统、移动支付等。本文将以第三视角详细讲解如何基于bifan-wei-Face/De…