省级-新质生产力数据(2010-2022年)-社科数据

省级-新质生产力数据(2010-2022年)-社科数据https://download.csdn.net/download/paofuluolijiang/90028612

https://download.csdn.net/download/paofuluolijiang/90028612

新质生产力是指在现代科技和经济社会发展的推动下,由新的生产要素、生产方式、生产关系等构成的具有新质特点的生产力。这种生产力突破了传统生产力的局限,具有更高的效率和创造力,是推动经济社会发展的重要动力。新质生产力在社会生产过程中表现为新的、具有变革性和创新性的生产力要素或形态,主要包括新的科技成果、新的生产工具、新的生产方式、新的管理方法、新的经济模式等。以数字化、网络化、智能化为特征的新一代信息技术,对传统生产方式进行改造升级,形成的智能制造、工业互联网等新型生产方式就是新质生产力的具体表现。从2010至2022年,全国31个省市自治区的新质生产力数据集提供了详细的数据,旨在衡量现代科技和经济社会发展下的新型生产力。该数据集涵盖了科技生产力、绿色生产力和数字生产力等多个维度,包括分地区授权专利数、高技术产业业务收入、规上工业企业产业创新经费等关键指标。这些指标不仅反映了各省市自治区在科技创新和产业升级方面的进步,也体现了绿色发展和数字经济的渗透程度。新质生产力的发展水平可从劳动力、劳动资料和劳动对象三个维度构建评价指标体系,运用熵权综合评价模型、熵权—TOPSIS评价模型和熵权—VIKOR评价模型等方法进行测算。这些方法能够综合考虑多个因素,更准确地评估新质生产力的发展状况。

参考文献:卢江,郭子昂,王煜萍.新质生产力发展水平、区域差异与提升路径[J/OL].重庆大学学报(社会科学版):1-16[2024-03-15].

数据

省份、年份、分地区授权专利数(个)、高技术产业业务收入(千元)、规上工业企业产业创新经费(万元)、规上工业企业R&D人员全时当量(h)、能源消费量/国内生产总值(%)、工业用水量/国内生产总值(%)、工业固废物综合利用量/产生量(%)、工业废水排放/国内生产总值(%)、工业SO2排放/国内生产总值(%)、集成电路产量(亿块)、电信业务总量(亿元)、互联网宽带接入端口数(万个)、软件业务收入(万元)、光缆线路长度/地区面积、电子商务销售额(万元)、新质生产力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894370.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用一个例子详细说明python单例模式

单例模式是一种设计模式,它确保一个类只有一个实例,并提供一个全局访问点来访问该实例。这在需要控制资源(如数据库连接、文件系统等)的访问时非常有用。 下面是一个使用Python实现单例模式的例子: class Singleton:…

【PyTorch】7.自动微分模块:开启神经网络 “进化之门” 的魔法钥匙

目录 1. 梯度基本计算 2. 控制梯度计算 3. 梯度计算注意 4. 小节 个人主页:Icomi 专栏地址:PyTorch入门 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活…

【数据分析】案例04:豆瓣电影Top250的数据分析与Web网页可视化(numpy+pandas+matplotlib+flask)

豆瓣电影Top250的数据分析与Web网页可视化(numpy+pandas+matplotlib+flask) 豆瓣电影Top250官网:https://movie.douban.com/top250写在前面 实验目的:实现豆瓣电影Top250详情的数据分析与Web网页可视化。电脑系统:Windows使用软件:PyCharm、NavicatPython版本:Python 3.…

Ubuntu20.04 深度学习环境配置(持续完善)

文章目录 常用的一些命令安装 Anaconda创建conda虚拟环境查看虚拟环境大小 安装显卡驱动安装CUDA安装cuDNN官方仓库安装 cuDNN安装 cuDNN 库验证 cuDNN 安装确认 CUDA 和 cuDNN 是否匹配: TensorRT下载 TensorRT安装 TensorRT 本地仓库配置 GPG 签名密钥安装 Tensor…

元宇宙与Facebook:社交互动的未来方向

随着技术的飞速发展,元宇宙逐渐成为全球科技领域关注的焦点。作为一种集沉浸式体验、虚拟空间和数字社交互动为一体的新型平台,元宇宙正在重新定义人类的社交方式。而在这一变革中,Facebook(现改名为Meta)作为全球领先…

【赵渝强老师】K8s中Pod探针的ExecAction

在K8s集群中,当Pod处于运行状态时,kubelet通过使用探针(Probe)对容器的健康状态执行检查和诊断。K8s支持三种不同类型的探针,分别是:livenessProbe(存活探针)、readinessProbe&#…

python 语音识别

目录 一、语音识别 二、代码实践 2.1 使用vosk三方库 2.2 使用SpeechRecognition 2.3 使用Whisper 一、语音识别 今天识别了别人做的这个app,觉得虽然是个日记app 但是用来学英语也挺好的,能进行语音识别,然后矫正语法,自己说的时候 ,实在不知道怎么说可以先乱说,然…

Node.js——body-parser、防盗链、路由模块化、express-generator应用生成器

个人简介 👀个人主页: 前端杂货铺 🙋‍♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…

PPT演示设置:插入音频同步切换播放时长计算

PPT中插入音频&同步切换&放时长计算 一、 插入音频及音频设置二、设置页面切换和音频同步三、播放时长计算 一、 插入音频及音频设置 1.插入音频:点击菜单栏插入-音频-选择PC上的音频(已存在的音频)或者录制音频(现场录制…

【llm对话系统】大模型 Llama 源码分析之 LoRA 微调

1. 引言 微调 (Fine-tuning) 是将预训练大模型 (LLM) 应用于下游任务的常用方法。然而,直接微调大模型的所有参数通常需要大量的计算资源和内存。LoRA (Low-Rank Adaptation) 是一种高效的微调方法,它通过引入少量可训练参数,固定预训练模型…

Linux 内核学习(5) --- Linux 内核底半部机制

目录 中断底半部软中断tasklet工作队列使用工作队列 中断底半部 当产生一个中断时,会进入中断处理程序,但中断处理程序必须快速、异步、简单的对硬件做出迅速响应并完成那些时间要求很严格的操作,因此,对于那些其他的、对时间要求…

3D图形学与可视化大屏:什么是材质属性,有什么作用?

一、颜色属性 漫反射颜色 漫反射颜色决定了物体表面对入射光进行漫反射后的颜色。当光线照射到物体表面时,一部分光被均匀地向各个方向散射,形成漫反射。漫反射颜色的选择会直接影响物体在光照下的外观。例如,一个红色的漫反射颜色会使物体在…

Jenkins未在第一次登录后设置用户名,第二次登录不进去怎么办?

Jenkins在第一次进行登录的时候,只需要输入Jenkins\secrets\initialAdminPassword中的密码,登录成功后,本次我们没有修改密码,就会导致后面第二次登录,Jenkins需要进行用户名和密码的验证,但是我们根本就没…

Qt常用控件 输入类控件

文章目录 1.QLineEdit1.1 常用属性1.2 常用信号1.3 例子1,录入用户信息1.4 例子2,正则验证手机号1.5 例子3,验证输入的密码1.6 例子4,显示密码 2. QTextEdit2.1 常用属性2.2 常用信号2.3 例子1,获取输入框的内容2.4 例…

有没有个性化的UML图例

绿萝小绿萝 (53****338) 2012-05-10 11:55:45 各位大虾,有没有个性化的UML图例 绿萝小绿萝 (53****338) 2012-05-10 11:56:03 例如部署图或时序图的图例 潘加宇 (35***47) 2012-05-10 12:24:31 "个性化"指的是? 你的意思使用你自己的图标&…

Go学习:字符、字符串需注意的点

Go语言与C/C语言编程有很多相似之处,但是Go语言中在声明一个字符时,数据类型与其他语言声明一个字符数据时有一点不同之处。通常,字符的数据类型为 char,例如 :声明一个字符 (字符名称为 ch) 的语句格式为 char ch&am…

本地部署 DeepSeek-R1 模型

文章目录 霸屏的AIDeepSeek是什么?安装DeepSeek安装图形化界面总结 霸屏的AI 最近在刷视频的时候,总是突然突然出现一个名叫 DeepSeek 的玩意,像这样: 这样: 这不经激起我的一顿好奇心,这 DeepSeek 到底是个…

断裂力学课程报告

谈谈你对线弹性断裂力学和弹塑性断裂力学的认识 经过对本课程的学习,我首先认识到断裂力学研究的是宏观的断裂问题,而不是研究属于断裂物理研究范围的微观结构断裂机理。断裂力学从材料内部存在缺陷出发,研究裂纹的生成、亚临界拓展&#xff…

代码随想录刷题day22|(字符串篇)344.反转字符串、541.反转字符串 II

目录 一、题目思路 二、相关题目 三、总结与知识点 3.1 字符数组转换成字符串 一、题目思路 344反转字符串比较容易,双指针即可在空间复杂度为O(1)的基础上解决; 541反转字符串II :其中for循环中 i 每次的取值,不是 i&#…

【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

一、使用pytorch框架实现逻辑回归 1. 数据部分: 首先自定义了一个简单的数据集,特征 X 是 100 个随机样本,每个样本一个特征,目标值 y 基于线性关系并添加了噪声。将 numpy 数组转换为 PyTorch 张量,方便后续在模型中…