pytorch实现简单的情感分析算法

 人工智能例子汇总:AI常见的算法和例子-CSDN博客 

在PyTorch中实现中文情感分析算法通常涉及以下几个步骤:数据预处理、模型定义、训练和评估。下面是一个简单的实现示例,使用LSTM模型进行中文情感分析。

1. 数据预处理

首先,我们需要对中文文本进行分词,并将文本转换为数值形式(如词向量)。可以使用jieba进行分词,并使用torchtext或自定义的词汇表将词语转换为索引。

import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.vocab import build_vocab_from_iterator
from torchtext.data.utils import get_tokenizer
import jieba# 示例数据
data = [("我非常喜欢这个电影", "positive"),("这个电影太糟糕了", "negative"),("这部电影真的很棒", "positive"),("我不喜欢这个电影", "negative"),("这部电影让我感动", "positive"),("这部电影太无聊了", "negative"),("演员表演非常出色", "positive"),("剧情太差了", "negative"),("画面非常精美", "positive"),("完全不值得看", "negative")
]# 分词函数
def tokenize(text):return list(jieba.cut(text))# 构建词汇表
tokenizer = get_tokenizer(tokenize)
vocab = build_vocab_from_iterator(map(tokenizer, [text for text, label in data]), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])# 将文本转换为索引
def text_to_indices(text):return [vocab[token] for token in tokenizer(text)]# 将标签转换为数值
label_to_index = {"positive": 1, "negative": 0}# 预处理数据
processed_data = [(text_to_indices(text), label_to_index[label]) for text, label in data]# 定义LSTM模型
class LSTMModel(nn.Module):def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout):super(LSTMModel, self).__init__()self.embedding = nn.Embedding(vocab_size, embedding_dim)self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, bidirectional=bidirectional,dropout=dropout)self.fc = nn.Linear(hidden_dim * 2 if bidirectional else hidden_dim, output_dim)self.dropout = nn.Dropout(dropout)def forward(self, text):embedded = self.dropout(self.embedding(text))  # [sequence_length, batch_size, embedding_dim]output, (hidden, cell) = self.lstm(embedded)hidden = self.dropout(torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1))  # [batch_size, hidden_dim * 2]return self.fc(hidden)  # [batch_size, output_dim]# 超参数
VOCAB_SIZE = len(vocab)
EMBEDDING_DIM = 100
HIDDEN_DIM = 256
OUTPUT_DIM = 1
N_LAYERS = 2
BIDIRECTIONAL = True
DROPOUT = 0.5# 初始化模型
model = LSTMModel(VOCAB_SIZE, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS, BIDIRECTIONAL, DROPOUT)# 损失函数和优化器
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters())# 训练函数
def train(model, data, optimizer, criterion, epochs=10):model.train()for epoch in range(epochs):total_loss = 0for text, label in data:text = torch.tensor(text).unsqueeze(1)  # [sequence_length, batch_size=1]label = torch.tensor([label], dtype=torch.float32)  # [batch_size=1]optimizer.zero_grad()predictions = model(text).squeeze(0)  # [batch_size=1]loss = criterion(predictions, label)loss.backward()optimizer.step()total_loss += loss.item()print(f'Epoch: {epoch + 1}, Loss: {total_loss / len(data)}')# 训练模型
train(model, processed_data, optimizer, criterion, epochs=20)# 预测函数
def predict_sentiment(model, sentence):model.eval()with torch.no_grad():text = torch.tensor(text_to_indices(sentence)).unsqueeze(1)  # [sequence_length, batch_size=1]prediction = torch.sigmoid(model(text).squeeze(0))  # [batch_size=1]return "positive" if prediction.item() > 0.5 else "negative"# 测试模型
test_sentences = ["这个电影真的很棒","这部电影太无聊了","演员表演非常出色","完全不值得看"
]for sentence in test_sentences:print(f'Sentence: {sentence}, Predicted sentiment: {predict_sentiment(model, sentence)}')
  1. 数据预处理

    • 使用 jieba 对中文文本进行分词。

    • 使用 torchtext 构建词汇表,并将文本转换为索引。

    • 将标签转换为数值(positive 为1,negative 为0)。

  2. 模型定义

    • 使用 LSTM 模型进行情感分析。

    • 模型包括嵌入层、LSTM 层和全连接层。

  3. 训练

    • 使用二元交叉熵损失函数(BCEWithLogitsLoss)和 Adam 优化器。

    • 训练模型 20 个 epoch。

  4. 预测

    • 使用训练好的模型对新的句子进行情感预测。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894311.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言指针】指针和函数

文章目录 一、前言二、指针函数2.1 概念2.2 定义2.3 具体例子 三、函数指针3.1 概念3.2 定义3.3 具体例子3.4 回调函数3.4.1 概念3.4.2 例子13.4.3 例子2 四、函数指针数组4.1 概念4.2 定义4.3 具体例子 五、函数指针数组的指针5.1 概念5.2 定义5.3 具体例子 一、前言 关于指针…

初识c语言(关键字)

前言&#xff1a; 注意&#xff1a; 变量的名称不能是关键字 变量的命名&#xff1a; 1、有意义 int age; flat salary; 2、名字必须是字母、数字、下划线组成&#xff0c;不能有特殊字符&#xff0c; 同时不能以数字开头 3、变量的命名不能是关键字 内容&#xff1a; …

FFmpeg(7.1版本)编译:Ubuntu18.04交叉编译到ARM

一、本地编译与交叉编译 1.本地编译 ① 本地编译:指的是在目标系统上进行编译的过程 , 生成的可执行文件和函数库只能在目标系统中使用。 如 : 在 Ubuntu中,本地编译的可执行文件只能在Ubuntu 系统中执行 , 无法在 Windows / Mac / Android / iOS 系统中使用 ; 在 Ubuntu…

对比DeepSeek、ChatGPT和Kimi的学术写作撰写引言能力

引言 引言部分引入研究主题&#xff0c;明确研究背景、问题陈述&#xff0c;并提出研究的目的和重要性&#xff0c;最后&#xff0c;概述研究方法和论文结构。 下面我们使用DeepSeek、ChatGPT4以及Kimi辅助引言撰写。 提示词&#xff1a; 你现在是一名[计算机理论专家]&#…

LabVIEW微位移平台位移控制系统

本文介绍了基于LabVIEW的微位移平台位移控制系统的研究。通过设计一个闭环控制系统&#xff0c;针对微位移平台的通信驱动问题进行了解决&#xff0c;并提出了一种LabVIEW的应用方案&#xff0c;用于监控和控制微位移平台的位移&#xff0c;从而提高系统的精度和稳定性。 项目背…

javaEE-6.网络原理-http

目录 什么是http? http的工作原理&#xff1a; 抓包工具 fiddler的使用 HTTP请求数据: 1.首行:​编辑 2.请求头(header) 3.空行&#xff1a; 4.正文&#xff08;body&#xff09; HTTP响应数据 1.首行&#xff1a;​编辑 2.响应头 3.空行&#xff1a; 4.响应正文…

开启 AI 学习之旅:从入门到精通

最近 AI 真的超火&#xff0c;不管是工作还是生活里&#xff0c;到处都能看到它的身影。好多小伙伴都跑来问我&#xff0c;到底该怎么学 AI 呢&#xff1f;今天我就把自己学习 AI 的经验和心得分享出来&#xff0c;希望能帮到想踏入 AI 领域的朋友们&#xff01; 一、学习内容…

【JAVA基础】双亲委派

双亲委派可以简单理解为, 当收到加载请求时, 会依次向上加载 ; 只有当父类加载器无法完成加载请求时&#xff0c;子类加载器才会尝试自己去加载。 工作原理 类加载请求传递&#xff1a;当应用程序需要加载一个类时&#xff0c;比如通过ClassLoader.loadClass()方法&#xff0…

嵌入式经典面试题之操作系统(一)

文章目录 1 请你说说常用的Linux命令有哪些&#xff1f;2 在linux中如何创建一个新的目录&#xff1f;3 Linux中查看进程运行状态的指令、tar解压文件的参数。4 在linux中&#xff0c;文件权限如何修改&#xff1f;5 怎样以root权限运行某个程序&#xff1f;6 在linux里如何查看…

排查定位jar包大文件

解压 JAR 包&#xff1a; mkdir jar_contents unzip your-jar-file.jar -d jar_contents统计各文件大小&#xff1a; du -ah jar_contents | sort -rh | head -n 20这会列出 JAR 包中最大的文件或目录&#xff0c;方便你定位大文件。 方法 2&#xff1a;使用 jar 工具查看文件…

OpenCV:闭运算

目录 1. 简述 2. 用膨胀和腐蚀实现闭运算 2.1 代码示例 2.2 运行结果 3. 闭运算接口 3.1 参数详解 3.2 代码示例 3.3 运行结果 4. 闭运算的应用场景 5. 注意事项 相关阅读 OpenCV&#xff1a;图像的腐蚀与膨胀-CSDN博客 OpenCV&#xff1a;开运算-CSDN博客 1. 简述…

Python-基于PyQt5,pdf2docx,pathlib的PDF转Word工具

前言:日常生活中,我们常常会跟WPS Office打交道。作表格,写报告,写PPT......可以说,我们的生活已经离不开WPS Office了。与此同时,我们在这个过程中也会遇到各种各样的技术阻碍,例如部分软件的PDF转Word需要收取额外费用等。那么,可不可以自己开发一个小工具来实现PDF转…

C++中的类与对象(下)

上一节我们将类与对象中一个比较难的也是一个比较重要的模块学习了&#xff0c;在这节主要是一些细节上的补充。 文章目录 目录 前言 一、初始化列表 初始化列表的性质 初始化列表的总结 二、类型转换 C中的类型转换 三、static成员 static的特点 一般情况下构造函数调用顺序&a…

rust跨平台调用动态库

动态库在不同的操作系统&#xff0c;扩展名是不一样的&#xff0c;所以要做处理: static LIB: Lazy<Mutex<Option<Library>>> Lazy::new(|| Mutex::new(None));type CreateFunc unsafe extern "C" fn(*const c_char, *const c_char) -> c_int…

四、jQuery笔记

(一)jQuery概述 jQuery本身是js的一个轻量级的库,封装了一个对象jQuery,jquery的所有语法都在jQuery对象中 浏览器不认识jquery,只渲染html、css和js代码,需要先导入jQuery文件,官网下载即可 jQuery中文说明文档:https://hemin.cn/jq/ (二)jQuery要点 1、jQuery对象 …

Versal - 基础4(VD100+Versal IBERT)

1. 简介 在之前的一篇博文中&#xff0c;我分享了在 Zynq Ultrascale MPSoC 中使用 IBERT 的方法。 《Vivado - 集成眼图分析仪 Serial I/O IBERT 误码率_vivado ibert-CSDN博客》 本文进一步探讨 Versal 中使用 IBERT 的方法。 2. 硬件平台 芯片&#xff1a;XCVE2302-SF…

《HelloGitHub》第 106 期

兴趣是最好的老师&#xff0c;HelloGitHub 让你对编程感兴趣&#xff01; 简介 HelloGitHub 分享 GitHub 上有趣、入门级的开源项目。 github.com/521xueweihan/HelloGitHub 这里有实战项目、入门教程、黑科技、开源书籍、大厂开源项目等&#xff0c;涵盖多种编程语言 Python、…

英语语法 第一天

I’m a student. 我是个学生 我是个新东方的学生 I’m a student of New Oriental School 我爱你 I love you 我在心中爱你 I love you in my heart. 这是一朵花 This is a flower 这是一朵在公园里的花 This is a flower in the park.(修饰部分在修饰词后面) 主干…

Day50:字典的合并

在 Python 中&#xff0c;字典是一个可变的数据类型&#xff0c;经常需要将多个字典合并成一个字典。合并字典的方式有多种&#xff0c;今天我们将学习几种常见的方法。 1. 使用 update() 方法合并字典 update() 方法可以用来将一个字典中的键值对添加到另一个字典中。如果目…

USB鼠标的数据格式

USB鼠标的数据格式由HID&#xff08;Human Interface Device&#xff09;协议定义&#xff0c;通常包含3个字节的标准数据&#xff0c;具体格式如下&#xff1a; 字节内容描述第1字节按键状态Bit 0: 左键按下&#xff08;1&#xff09;<br>Bit 1: 右键按下&#xff08;1…