vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列

最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscode+cuda11.6+vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和cl编译器离的远远的。

安装WSL+vscode工作链

首先是已经安装好了wsl2,wsl是windows下的Linux子系统,特别好用相当于集齐了linux的开源架构特点和win中的图形化界面(我安装wsl2后,下载的是ubuntu 22.04LTS版本)。直接可以在命令行启动,或者也可以在vscode中安装一个插件。

wsl安装命令如下(来自deepseek,不保证完全可行)

wsl --install
wsl --list --online
wsl --install -d Ubuntu

正是该传奇插件,安装好后,就可以通过remote SSH直连WSL2,相当于借鸡生蛋,只是借用了个windows中的vscode的图形化界面,操作的还是Linux中的东西。

这里可以看到打开的终端对应的是linux中的bash shell。

安装cuda11.7

然后就是安装cuda11.7(之所以选择cuda11.7是因为cuda11.7比较完善,而且GPU Invida3060以上就能支持),大概的安装命令就是问deepseek就行了,deepseek给出的安装办法如下:

wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda-repo-wsl-ubuntu-11-7-local_11.7.0-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-11-7-local_11.7.0-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-11-7-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda

 安装好后还需要配置环境变量,要配置bin和lib64的,这里我的配置方法如下:

首先:

vim ~/.bashrc

其次:

export PATH=/usr/local/cuda-11/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

保存并退出后:

source ~/.bashrc

随后检验一下用如下命令:

nvcc --version

搭建cuda c编程环境并检验

要建设cuda c编程环境还要再安装个gcc编译器包(不确定,不安可能也行),安装好后,在工作目录新建一个test.cu。

#include <stdio.h>
#include <cuda_runtime.h>// CUDA 核函数,用于向量加法
__global__ void vectorAdd(const float *A, const float *B, float *C, int numElements) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < numElements) {C[i] = A[i] + B[i];}
}int main() {// 定义向量大小int numElements = 50000;size_t size = numElements * sizeof(float);// 分配主机内存float *h_A = (float *)malloc(size);float *h_B = (float *)malloc(size);float *h_C = (float *)malloc(size);// 初始化主机数据for (int i = 0; i < numElements; ++i) {h_A[i] = rand() / (float)RAND_MAX;h_B[i] = rand() / (float)RAND_MAX;}// 分配设备内存float *d_A, *d_B, *d_C;cudaMalloc((void **)&d_A, size);cudaMalloc((void **)&d_B, size);cudaMalloc((void **)&d_C, size);// 将数据从主机复制到设备cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);// 定义线程块和网格大小int threadsPerBlock = 256;int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;// 启动 CUDA 核函数vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);// 将结果从设备复制回主机cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);// 验证结果for (int i = 0; i < numElements; ++i) {if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) {fprintf(stderr, "Result verification failed at element %d!\n", i);exit(EXIT_FAILURE);}}printf("Test PASSED\n");// 释放设备内存cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);// 释放主机内存free(h_A);free(h_B);free(h_C);return 0;
}

然后在终端中输入如下命令

nvcc -o test test.cu
./test

 结果如下,上面的命令是先编译.cu文件然后再运行编译后的生成。

搭建pytorch深度学习开发环境

这里就稍微麻烦一些了,首先要确保安装了anaconda,conda是专门的为Python虚拟环境的搭建而服务的,安装命令如下:

wget https://repo.anaconda.com/miniconda/Miniconda3-py38_4.9.2-Linux-x86_64.sh
bash Miniconda3-py38_4.9.2-Linux-x86_64.sh
conda init

随后新建python3.8的虚拟环境并启动

conda create --name myenv python=3.8
conda activate myenv

确保是在虚拟环境中去安装pytorch,这里安装的是pytorch2.0.1,具体安装的时候我犯了好几次错误,实际上问ai让ai来换源是不可行的,ai换的源总是有问题,但是不换源又下的太慢,这里的解决办法是用梯子魔法+pip来安装(实测发现pip安装比conda安装要快一些),具体安装命令如下:

Previous PyTorch Versions | PyTorch是在这个安装历史版本中找的命令。

pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2

安装完成后的验证代码如下:

import torchprint(torch.__version__)
print(torch.cuda.is_available())

安装cudnn

cudnn是英伟达专门开发的cuda neural network库,安装命令如下:

wget https://developer.download.nvidia.com/compute/cudnn/9.7.0/local_installers/cudnn-local-repo-ubuntu2204-9.7.0_1.0-1_amd64.deb
sudo dpkg -i cudnn-local-repo-ubuntu2204-9.7.0_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2204-9.7.0/cudnn-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cudnn

cuDNN 9.7.0 Downloads | NVIDIA Developer

但是有个问题我是不太清楚,我安装的是cudnn的9.7.0但是跑下面的验证代码的时候却告诉我cudnn是8.5.00

import torch# 检查 PyTorch 版本
print(torch.__version__)# 检查 CUDA 是否可用
print(torch.cuda.is_available())# 检查 cuDNN 版本
print(torch.backends.cudnn.version())# 检查当前 GPU 设备
print(torch.cuda.current_device())# 检查 GPU 名称
print(torch.cuda.get_device_name(0))

总结

环境配置是电信技术中的集大成者,我本人也不是很懂,经常失败是很正常的。但是千万记得,不要直接去下载国外网站大文件,否则下载失败再重来会是很痛苦的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894150.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入了解 npm 和 pnpm:前端包管理工具的选择与比较

在现代前端开发中&#xff0c;包管理工具已经成为了必不可少的组成部分。它们帮助我们管理项目的依赖、自动化任务、以及在团队协作时确保一致的开发环境。最常见的前端包管理工具有 npm 和 pnpm&#xff0c;它们各自具有独特的特点和优势。今天&#xff0c;我们就来一起深入了…

剑指 Offer II 011. 0 和 1 个数相同的子数组

comments: true edit_url: https://github.com/doocs/leetcode/edit/main/lcof2/%E5%89%91%E6%8C%87%20Offer%20II%20011.%200%20%E5%92%8C%201%20%E4%B8%AA%E6%95%B0%E7%9B%B8%E5%90%8C%E7%9A%84%E5%AD%90%E6%95%B0%E7%BB%84/README.md 剑指 Offer II 011. 0 和 1 个数相同的子…

【MQ】RabbitMq的可靠性保证

消息队列中的可靠性主要是分为三部分&#xff1a; 消息不丢失&#xff1a;确保消息从生产者发送到消费者消息不丢失消息不重复&#xff1a;确保消息不被重复消费消息顺序性&#xff1a;确保消费的顺序性 解决方案主要有以下几部分&#xff1a; 消息不丢失 生产者确认机制持久…

Jason配置环境变量

jason官网 https://jason-lang.github.io/ https://github.com/jason-lang/jason/releases 步骤 安装 Java 21 或更高版本 安装 Visual Studio Code 根据操作系统&#xff0c;请按照以下具体步骤操作 视窗 下载 Jason 的最新版本&#xff0c;选择“jason-bin-3.3.0.zip”…

SpringBoot 日志与配置文件

SpringBoot 配置文件格式 Properties 格式 Component ConfigurationProperties(prefix "person") //和配置文件person前缀的所有配置进行绑定 Data public class Person {private String name;private Integer age;private Date birthDay;private Boolean like;pr…

【Elasticsearch】 Intervals Query

Elasticsearch Intervals Query 返回基于匹配术语的顺序和接近度的文档。 intervals 查询使用 匹配规则&#xff0c;这些规则由一小组定义构建而成。这些规则然后应用于指定 field 中的术语。 这些定义生成覆盖文本中术语的最小间隔序列。这些间隔可以进一步由父源组合和过滤…

HarmonyOS DevEco Studio模拟器点击运行没有反应的解决方法

HarmonyOS DevEco Studio模拟器点击运行没有反应的解决方法 翻遍了CSDN&#xff0c;试了所有办法都没办法&#xff0c;最后偶然间竟然解决了 解决方法其实很简单&#xff1a;本地模拟器下载路径下面不能有中文。。。。。 切换正确路径以后&#xff0c;成功运行&#xff0c;哦…

删除数组中的重复项(leetcode刷题)

题目描述&#xff1a; 给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的…

网站快速收录:优化图片与视频的SEO策略

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/29.html 优化图片与视频的SEO策略对于网站快速收录至关重要。以下是一些具体的策略&#xff0c;旨在提高图片与视频在搜索引擎中的可见性和收录率&#xff1a; 一、图片SEO优化策略 选择合…

虚幻基础16:locomotion direction

locomotion locomotion&#xff1a;角色运动系统的总称&#xff1a;包含移动、奔跑、跳跃、转向等。 locomotion direction 玩家输入 玩家输入&#xff1a;通常代表玩家想要的移动方向。 direction 可以计算当前朝向与移动方向的Δ。从而实现朝向与移动(玩家输入)方向的分…

单片机基础模块学习——超声波传感器

一、超声波原理 左边发射超声波信号&#xff0c;右边接收超声波信号 左边的芯片用来处理超声波发射信号&#xff0c;中间的芯片用来处理接收的超声波信号 二、超声波原理图 T——transmit 发送R——Recieve 接收 U18芯片对输入的N_A1信号进行放大&#xff0c;然后输入给超声…

基于 NodeJs 一个后端接口的创建过程及其规范 -- 【elpis全栈项目】

基于 NodeJs 一个后端接口的创建过程及其规范 一个接口的诞生&#xff1a; #mermaid-svg-46HXZKI3fdnO0rKV {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-46HXZKI3fdnO0rKV .error-icon{fill:#552222;}#mermaid-sv…

MySQL(高级特性篇) 14 章——MySQL事务日志

事务有4种特性&#xff1a;原子性、一致性、隔离性和持久性 事务的隔离性由锁机制实现事务的原子性、一致性和持久性由事务的redo日志和undo日志来保证&#xff08;1&#xff09;REDO LOG称为重做日志&#xff0c;用来保证事务的持久性&#xff08;2&#xff09;UNDO LOG称为回…

【设计模式-行为型】备忘录模式

一、什么是备忘录模式 来到备忘录模式了&#xff0c;这个模式我感觉相对简单一些&#xff0c;就是备份&#xff0c;或者快照。跟前面一样为了加深理解&#xff0c;我们引入一个电影情结来说明啥是备忘录模式&#xff0c;以来加深大家对备忘录模式的认识。那么&#xff0c;在电影…

C# 与.NET 日志变革:JSON 让程序“开口说清话”

一、引言&#xff1a;日志新时代的开启 在软件开发的漫长旅程中&#xff0c;日志一直是我们不可或缺的伙伴。它就像是应用程序的 “黑匣子”&#xff0c;默默地记录着程序运行过程中的点点滴滴&#xff0c;为我们在调试、排查问题以及性能优化时提供关键线索。在早期&#xff…

AI在自动化测试中的伦理挑战

在软件测试领域&#xff0c;人工智能&#xff08;AI&#xff09;已经不再是遥不可及的未来技术&#xff0c;而是正在深刻影响着测试过程的现实力量。尤其是在自动化测试领域&#xff0c;AI通过加速测试脚本生成、自动化缺陷检测、测试数据生成等功能&#xff0c;极大提升了测试…

实验一---典型环节及其阶跃响应---自动控制原理实验课

一 实验目的 1.掌握典型环节阶跃响应分析的基本原理和一般方法。 2. 掌握MATLAB编程分析阶跃响应方法。 二 实验仪器 1. 计算机 2. MATLAB软件 三 实验内容及步骤 利用MATLAB中Simulink模块构建下述典型一阶系统的模拟电路并测量其在阶跃响应。 1.比例环节的模拟电路 提…

C++小病毒-1.0勒索(更新次数:2)

内容供学习使用,不得转卖,代码复制后请1小时内删除,此代码会危害计算机安全,谨慎操作 在C20环境下,并在虚拟机里运行此代码!&#xff0c;病毒带来后果自负! 使用时请删除在main()里的注释,并修改位置至C:\\(看我代码注释)//可以改成WIN Main() #include <iostream> #i…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.25 视觉风暴:NumPy驱动数据可视化

1.25 视觉风暴&#xff1a;NumPy驱动数据可视化 目录 #mermaid-svg-i3nKPm64ZuQ9UcNI {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-i3nKPm64ZuQ9UcNI .error-icon{fill:#552222;}#mermaid-svg-i3nKPm64ZuQ9UcNI …

小南每日 AI 资讯 | AI模型扩展的快速增长时代正在放缓 | 25/01/30

AI模型扩展的挑战&#xff1a;随着研究人员发现单纯通过增加规模和计算能力难以获得更大回报&#xff0c;AI模型扩展的快速增长时代正在放缓。 GPT-5开发延迟&#xff1a;OpenAI雄心勃勃的GPT-5项目&#xff08;代号&#xff1a;Orion&#xff09;面临着显著的障碍&#xff0c…