机器学习-核函数(Kernel Function)

核函数(Kernel Function)是一种数学函数,主要用于将数据映射到一个更高维的特征空间,以便于在这个新特征空间中更容易找到数据的结构或模式。核函数的主要作用是在不需要显式计算高维特征空间的情况下,通过内积操作来实现高维映射,从而简化计算。

核函数的作用

  1. 处理非线性问题:很多机器学习算法(如支持向量机)在原始特征空间中仅能处理线性可分数据。通过核函数,可以将数据映射到更高的特征空间,使得即使在原始空间中非线性可分的数据,也可以在线性可分的高维空间中找到分离超平面。

  2. 提高模型的灵活性:通过选择不同的核函数,模型可以适应不同类型的数据分布,从而优化分类、回归等任务的性能。

  3. 避免维度灾难:直接进行高维计算可能会带来计算复杂度高和数据稀疏的问题。核函数通过计算内积的方式在更低的维度上完成挑战,从而减轻了这一问题。

常用的核函数

  1. 线性核:  K(x_i,x_j)=x_i^Tx_j    于线性可分数据。
  2. 多项式核:  K(x_i,x_j)=(x_i^Tx_j+c)^d  其中 c是常数,d是多项式的度数。
  3. 高斯(RBF)核高斯核非常常用,能够处理许多非线性问题。
  4. Sigmoid核:                                                                                                                              

适用于神经网络的某些模型。

这些核函数在选择和应用时可以根据具体问题的需要而定。不同的核函数对模型的表现可以产生显著影响,因此在实践中往往需要进行选择和调优。

例子:使用高斯 (RBF) 核的支持向量机

import numpy as np  
import matplotlib.pyplot as plt  
from sklearn import datasets  
from sklearn.model_selection import train_test_split  
from sklearn.svm import SVC  
from sklearn.metrics import classification_report, confusion_matrix  # 生成一个分类数据集  
X, y = datasets.make_moons(n_samples=100, noise=0.1, random_state=42)  # 分割数据集为训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)  # 创建高斯核支持向量机模型  
svm_rbf = SVC(kernel='rbf', gamma='scale')  # 训练模型  
svm_rbf.fit(X_train, y_train)  # 对测试集进行预测  
y_pred = svm_rbf.predict(X_test)  # 输出分类报告  
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))  
print("\nClassification Report:\n", classification_report(y_test, y_pred))  # 可视化结果  
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred, cmap='coolwarm', s=50, edgecolor='k')  
plt.title('SVM with RBF Kernel')  
plt.xlabel('Feature 1')  
plt.ylabel('Feature 2')  
plt.show()

示例 2: 使用线性核的支持向量机

# 生成一个线性可分的数据集  
X_linear, y_linear = datasets.make_blobs(n_samples=100, centers=2, random_state=6)  # 分割数据集为训练集和测试集  
X_train_linear, X_test_linear, y_train_linear, y_test_linear = train_test_split(X_linear, y_linear, test_size=0.3, random_state=42)  # 创建线性核支持向量机模型  
svm_linear = SVC(kernel='linear')  # 训练模型  
svm_linear.fit(X_train_linear, y_train_linear)  # 对测试集进行预测  
y_pred_linear = svm_linear.predict(X_test_linear)  # 输出分类报告  
print("\nConfusion Matrix (Linear SVM):\n", confusion_matrix(y_test_linear, y_pred_linear))  
print("\nClassification Report (Linear SVM):\n", classification_report(y_test_linear, y_pred_linear))  # 可视化结果  
plt.scatter(X_test_linear[:, 0], X_test_linear[:, 1], c=y_pred_linear, cmap='coolwarm', s=50, edgecolor='k')  
plt.title('SVM with Linear Kernel')  
plt.xlabel('Feature 1')  
plt.ylabel('Feature 2')  
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/893628.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络 (60)蜂窝移动通信网

一、定义与原理 蜂窝移动通信网是指将一个服务区分为若干蜂窝状相邻小区并采用频率空间复用技术的移动通信网。其原理在于,将移动通信服务区划分成许多以正六边形为基本几何图形的覆盖区域,称为蜂窝小区。每个小区设置一个基站,负责本小区内移…

每日一题 419. 棋盘上的战舰

419. 棋盘上的战舰 简单 class Solution { public:int countBattleships(vector<vector<char>>& board) {int ans 0;for(int i0;i<board.size();i){for(int j0;j<board[0].size();j){if(board[i][j] X){dfs(board,i,j);ans;}}}return ans;}void dfs(…

win32汇编环境,函数的编写与调用、传值或返回值等

;运行效果 ;win32汇编环境,函数的编写与调用、传值或返回值等 ;函数在被调用的时候&#xff0c;如果此函数实体在前面&#xff0c;可以不用声明。如果实体在后面&#xff0c;则需要先声明。类似于下面的DlgProc函数&#xff0c;因为它的实体在后面&#xff0c;所以需要在调用之…

web前端3--css

注意&#xff08;本文一切代码一律是在vscode中书写&#xff09; 1、书写位置 1、行内样式 //<标签名 style"样式声明"> <p style"color: red;">666</p> 2、内嵌样式 1、style标签 里面写css代码 css与html之间分离 2、css属性:值…

Oracle 创建用户和表空间

Oracle 创建用户和表空间 使用sys 账户登录 建立临时表空间 --建立临时表空间 CREATE TEMPORARY TABLESPACE TEMP_POS --创建名为TEMP_POS的临时表空间 TEMPFILE /oracle/oradata/POS/TEMP_POS.DBF -- 临时文件 SIZE 50M -- 其初始大小为50M AUTOEXTEND ON -- 支持…

Java 大视界 -- Java 大数据中的异常检测技术与应用(61)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…

利用大语言模型(LLM)增强软件测试自动化的最佳实践

在当今迅速变化的科技时代&#xff0c;软件测试行业面临着越来越高的效率和质量要求。作为测试专家&#xff0c;我们都知道&#xff0c;传统的测试方法往往无法满足快速迭代和高效交付的需求。在这种背景下&#xff0c;自动化测试逐渐成为解决方案的一部分。而大语言模型&#…

Anonymous,Github 匿名化工具

一.Github 匿名化工具 Anonymous&#xff0c;会为 github 自动生成一个匿名化的URL&#xff0c;保护隐私和双盲评审 待添加...

Linux(Centos、Ubuntu) 系统安装jenkins服务

该文章手把手演示在Linux系统下如何安装jenkins服务、并自定义jenkins数据文件位置、以及jenkins如何设置国内镜像源加速&#xff0c;解决插件下载失败问题 安装方式&#xff1a;war包安装 阿里云提供的war下载源地址&#xff1a;https://mirrors.aliyun.com/jenkins/war/?s…

不只是mini-react第二节:实现最简fiber

省流|总结 首先&#xff0c;我们编写JSX文件&#xff0c;并通过Babel等转换工具将其转化为createElement()函数的调用&#xff0c;最终生成虚拟 DOM&#xff08;Vdom&#xff09;格式。举个例子&#xff1a; // 原始 JSX const App <div>hi-mini-react</div>;//…

MATLAB中alphanumericsPattern函数用法

目录 语法 说明 示例 从文本中提取字母和数字 匹配所设置数目的字母和数字 匹配不同大小的字母和数字集合 alphanumericsPattern函数的功能是匹配字母和数字字符。 语法 pat alphanumericsPattern pat alphanumericsPattern(N) pat alphanumericsPattern(minCharact…

【数据结构】树的基本:结点、度、高度与计算

树是数据结构中一种重要的非线性结构&#xff0c;广泛应用于计算机科学的各个领域&#xff0c;例如文件系统、数据库索引、编译器等。理解树的各种性质&#xff0c;如结点数、度、高度等&#xff0c;对于解决实际问题至关重要。 本文将会探讨树的基本概念&#xff0c;以及给出几…

Flutter调用HarmonyOS NEXT原生相机拍摄相册选择照片视频

目录 1.项目背景 2.遇到的问题 3.开发准备 4.开发过程 首先创建注册调用鸿蒙原生的渠道 创建并初始化插件 绑定通道完成插件中的功能 5.具体步骤 根据传值判断是相册选取还是打开相机 相册选取照片或视频 相机拍摄照片或视频 调用picker拍摄接口获取拍摄的结果 视频…

MongoDB实训:电子商务日志存储任务

一、实验目的 1. 理解如何通过Java API连接MongoDB数据库。 2. 学习在Java中使用MongoDB进行数据库操作&#xff0c;包括插入数据、查询数据以及数据统计等。 3. 掌握电子商务日志数据在MongoDB中的存储和操作方法。 二、实验环境准备 1. JAVA环境准备&#xff1a;确保…

计算机网络 (59)无线个人区域网WPAN

前言 无线个人区域网&#xff08;WPAN&#xff0c;Wireless Personal Area Network&#xff09;是一种以个人为中心&#xff0c;采用无线连接方式的个人局域网。 一、定义与特点 定义&#xff1a;WPAN是以个人为中心&#xff0c;实现活动半径小、业务类型丰富、面向特定群体的无…

从spec到iso的koji使用

了解一下Linux发行版流程&#xff1a;:从spec到iso的koji使用 for Fedora 41。 Fedora 41有24235个包&#xff0c;我们选择 minimal 的几十个源码包&#xff0c;百多个rpm包构建。 配3台服务器 40C64G 44C64G 80C128G&#xff0c;有点大材小用&#xff0c;一台就够了 &#xf…

【无标题】mysql python 连接

coding:utf8 import os import pymysql import yaml from common.log import logger class Mysql: # 处理.sql备份文件为SQL语句 def __read_sql_file(self,file_path): # 打开SQL文件到f sql_list = [] with open(file_path, ‘r’, encoding=‘utf8’) as f: # 逐行读取和…

激光线扫相机无2D图像的标定方案

方案一&#xff1a;基于运动控制平台的标定 适用场景&#xff1a;若激光线扫相机安装在可控运动平台&#xff08;如机械臂、平移台、旋转台&#xff09;上&#xff0c;且平台的运动精度已知&#xff08;例如通过编码器或高精度步进电机控制&#xff09;。 步骤&#xff1a; 标…

第17篇:python进阶:详解数据分析与处理

第17篇&#xff1a;数据分析与处理 内容简介 本篇文章将深入探讨数据分析与处理在Python中的应用。您将学习如何使用pandas库进行数据清洗与分析&#xff0c;掌握matplotlib和seaborn库进行数据可视化&#xff0c;以及处理大型数据集的技巧。通过丰富的代码示例和实战案例&am…

20250124-注意力机制(5-7)【3/3完结】 ——已复现

Attention Is All You Need&#xff08;注意力就是你所需要的一切&#xff09;&#xff08;5-7&#xff09;【3/3完结】 ——已复现 20250124-注意力机制&#xff08;1-2&#xff09;【1/3】 ——已复现-CSDN博客 20250124-注意力机制&#xff08;3-4&#xff09;【2/3】 ——已…