吴恩达深度学习——神经网络介绍

文章内容来自BV11H4y1F7uH,仅为个人学习所用。

文章目录

  • 什么是神经网络
    • 引入
    • 神经网络
      • 神经元
      • 激活函数ReLU
      • 隐藏单元
  • 用神经网络进行监督学习
    • 监督学习与无监督学习
    • 举例

什么是神经网络

引入

已经有六个房子的数据集,横轴为房子大小,纵轴为房子价格,关系如图:
在这里插入图片描述
现在想要找到一个函数,能够根据房子面积预测房价。在这里插入图片描述
可以画出如图的直线来表示函数。该函数由两部分组成:函数值为0的区域和房子面积关于房价的函数。

神经网络

上述的房价加一个拟合函数,可以看成是一个非常简单的神经网络。

神经元

神经元通常以节点的形式存在,多个神经元相互连接构成网络,神经元包括输入层神经元、隐藏层神经元和输出层神经元等所有在神经网络结构中参与信息处理和传递的单元。下图是一个单神经元网络。
在这里插入图片描述
房子大小(面积)看作 x x x,通过一个圆圈(表示一个神经元),输出房价 y y y。这个神经元要做的就是输入面积,完成线性运算,最后得到函数值。

大型的神经网络通过一个个神经元组合起来。

激活函数ReLU

上述的函数图像为在这里插入图片描述
被称为ReLU函数。R指的是修正,取不小于0的值。

激活函数引入了非线性因素,使神经网络能够学习和模拟各种复杂的非线性关系。如果没有激活函数,神经网络将只能表示线性函数,其表达能力和学习能力将非常有限,无法处理现实世界中的大多数复杂问题,如图像识别、语音识别中的高度非线性模式。

隐藏单元

下面看一个更复杂的神经网络:房价的影响不仅仅是房子大小,还有比如卧室数量、邮编(相当于地段)财富因素。房子面积和卧室数量影响一家住几口人;邮编(地段)影响出行的便利程度;邮编和财富影响周围学校的质量,这些都影响着房价。

图中每一个圆圈代表着一个ReLU或者不是线性的其他函数。图中 x x x是左边的4个影响因素, y y y是右边的房价,中间的部分是神经元组成的网络。有了该神经网络,不如输入怎样的 x x x,都可以通过该神经网络输出 y y y
在这里插入图片描述
中间部分的神经元也被称为隐藏单元,位于神经网络输入层和输出层之间,是神经元的一个子集。在这里插入图片描述

用神经网络进行监督学习

监督学习与无监督学习

监督学习是指从有标记的训练数据中学习模型的机器学习任务。在监督学习中,每个训练样本都有对应的输入特征和已知的输出标签(或目标值),模型通过学习这些输入与输出之间的映射关系,从而能够对新的、未见过的输入数据进行预测或分类。

无监督学习是在无标记的数据上进行学习,数据集中仅包含输入特征,没有给定的明确输出标签或目标值,模型旨在发现数据中的内在结构、模式或规律。

举例

在这里插入图片描述
上述图片展示了三种不同的神经网络,分别是标准神经网络、卷积神经网络、循环神经网络。这些在后面介绍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/893275.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT 摘要,以 ESS 作为你的私有数据存储

作者:来自 Elastic Ryan_Earle 本教程介绍如何设置 Elasticsearch 网络爬虫,将网站索引到 Elasticsearch 中,然后利用 ChatGPT 使用我们的私人数据来总结对其提出的问题。 Python 脚本的 Github Repo:https://github.com/Gunner…

数智化转型 | 星环科技Defensor 助力某银行数据分类分级

在数据驱动的金融时代,数据安全和隐私保护的重要性日益凸显。某银行作为数字化转型的先行者,面临着一项艰巨的任务:如何高效、准确地对分布在多个业务系统、业务库与数仓数湖中的约80万个字段进行数据分类和分级。该银行借助星环科技数据安全…

【JDBC】数据库连接的艺术:深入解析数据库连接池、Apache-DBUtils与BasicDAO

文章目录 前言🌍 一.连接池❄️1. 传统获取Conntion问题分析❄️2. 数据库连接池❄️3.连接池之C3P0技术🍁3.1关键特性🍁3.2配置选项🍁3.3使用示例 ❄️4. 连接池之Druid技术🍁 4.1主要特性🍁 4.2 配置选项…

Flink (九):DataStream API (六) Process Function

1. ProcessFunction ProcessFunction 是一种底层的流处理操作,基于它用户可以访问(无环)流应用程序的所有基本构建块 事件(流元素)状态(容错,一致性,仅在 keyed stream 上&#xf…

Linux Bash 中使用重定向运算符的 5 种方法

注:机翻,未校。 Five ways to use redirect operators in Bash Posted: January 22, 2021 | by Damon Garn Redirect operators are a basic but essential part of working at the Bash command line. See how to safely redirect input and output t…

C语言内存之旅:从静态到动态的跨越

大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 本文目录 引言正文一 动态内存管理的必要性二 动态…

AI时代:弯道超车的新思维与实践路径

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的…

完整地实现了推荐系统的构建、实验和评估过程,为不同推荐算法在同一数据集上的性能比较提供了可重复实验的框架

{"cells": [{"cell_type": "markdown","metadata": {},"source": ["# 基于用户的协同过滤算法"]},{"cell_type": "code","execution_count": 1,"metadata": {},"ou…

【Spring】定义的Bean缺少隐式依赖

问题描述 初学 Spring 时,我们往往不能快速转化思维。例如,在程序开发过程中,有时候,一方面我们把一个类定义成 Bean,同时又觉得这个 Bean 的定义除了加了一些 Spring 注解外,并没有什么不同。所以在后续使…

基于本地消息表实现分布式事务

假设我们有一个电商系统,包含订单服务和库存服务。当用户下单时,需要在订单服务中创建订单,同时在库存服务中扣减库存。这是一个典型的分布式事务场景,我们需要保证这两个操作要么都成功,要么都失败,以保证数据的最终一致性。 项目结构: 订单服务(Order Service)库存服务(Inv…

『 实战项目 』Cloud Backup System - 云备份

文章目录 云备份项目服务端功能服务端功能模块划分客户端功能客户端模块划分 项目条件Jsoncpp第三方库Bundle第三方库httplib第三方库Request类Response类Server类Client类搭建简单服务器搭建简单客户端 服务端工具类实现 - 文件实用工具类服务器配置信息模块实现- 系统配置信息…

网络编程 | UDP组播通信

1、什么是组播 在上一篇博客中,对UDP的广播通信进行了由浅入深的总结梳理,本文继续对UDP的知识体系进行探讨,旨在将UDP的组播通信由浅入深的讲解清楚。 组播是介于单播与广播之间,在一个局域网内,将某些主机添加到组中…

第9章:Python TDD解决货币对象相等性比较难题

写在前面 这本书是我们老板推荐过的,我在《价值心法》的推荐书单里也看到了它。用了一段时间 Cursor 软件后,我突然思考,对于测试开发工程师来说,什么才更有价值呢?如何让 AI 工具更好地辅助自己写代码,或许…

【无标题】微调是迁移学习吗?

是的,微调(Fine-Tuning)可以被视为一种迁移学习(Transfer Learning)的形式。迁移学习是一种机器学习方法,其核心思想是利用在一个任务上学到的知识来改进另一个相关任务的性能。微调正是通过在预训练模型的…

Jenkins-获取build用户信息

需求: 代码发布后,将发布结果发送至相关运维同学邮箱,需要获取发布人的信息。jenkins默认是没有相关内置变量的。 需要通过插件的方式进行解决: 插件: user build vars plugin 部署后,可使用的变量&…

【HarmonyOS NAPI 深度探索12】创建你的第一个 HarmonyOS NAPI 模块

【HarmonyOS NAPI 深度探索12】创建你的第一个 HarmonyOS NAPI 模块 在本篇文章中,我们将一步步走过如何创建一个简单的 HarmonyOS NAPI 模块。通过这个模块,你将能够更好地理解 NAPI 的工作原理,并在你的应用中开始使用 C 与 JavaScript 的…

OpenCV相机标定与3D重建(62)根据两个投影矩阵和对应的图像点来计算3D空间中点的坐标函数triangulatePoints()的使用

加粗样式- 操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 这个函数通过使用立体相机对3维点的观测,重建这些点的三维坐标(以齐次坐标表示)。 cv::triangula…

为AI聊天工具添加一个知识系统 之58 从文字块构造到数据库创建

本文要点 要点 文字块 为了项目(为AI聊天工具的聊天者 开挂知识系统) ,我们探索一下知识的“种子”到底“藏”在哪,知识树又是如何“生根发芽开会结果”的。 看看下面的四组表达(仔细体会理解消化每一个字 以及上下文 和标题):…

【电视盒子】HI3798MV300刷机教程笔记/备份遥控码修复遥控器/ADB/线刷卡刷/电视盒子安装第三方应用软件

心血来潮,看到电视机顶盒满天飞的广告,想改造一下家里的电视盒子,学一下网上的人刷机,但是一切都不知道怎么开始,虽然折腾了一天,以失败告终,还是做点刷机笔记。 0.我的机器 年少不会甄别&…

Python基于OpenCV和PyQt5的人脸识别上课签到系统【附源码】

博主介绍:✌Java老徐、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇&…