Interpreting Machine Learning Models with SHAP: A Comprehensive Guide

Interpreting Machine Learning Models with SHAP: A Comprehensive Guide

DateAuthorVersionNote
2024.06.20Dog TaoV1.0Finish the document.

文章目录

  • Interpreting Machine Learning Models with SHAP: A Comprehensive Guide
    • What is SHAP
    • Understanding Base Value
      • Definition of Base Value
      • Significance of the Base Value
      • Contextual Examples
        • Regression Models
        • Classification Models
      • Visual Representation
      • Mathematical Context
    • Understanding SHAP Value
      • Regression Models
      • Classification Models
      • Visual Representation in Both Contexts

What is SHAP

SHAP (SHapley Additive exPlanations) values are a method used in machine learning to interpret the output of complex models. The SHAP value of a feature represents the impact that feature has on the prediction of a particular instance. It is based on concepts from cooperative game theory, specifically the Shapley value, which assigns a value to each player (or feature) in a way that fairly distributes the payout among them according to their contribution to the total payout.

Here are the key points about SHAP values:

  1. Feature Contribution: SHAP values show how much each feature contributes to the prediction, either positively or negatively.
  2. Additivity: The SHAP values for all features of a particular prediction add up to the difference between the model’s prediction and the average prediction over the dataset.
  3. Consistency: If a model changes in a way that increases the marginal contribution of a feature, the SHAP value for that feature will not decrease.
  4. Local Interpretability: SHAP values provide insight into the prediction for a single instance, helping to understand the model’s decision-making process for individual cases.
  5. Global Interpretability: By aggregating SHAP values across many instances, you can gain an understanding of the overall importance of each feature in the model.

Mathematically, the SHAP value for a feature i i i in an instance x x x is calculated as follows:

ϕ i = ∑ S ⊆ F ∖ { i } ∣ S ∣ ! ( ∣ F ∣ − ∣ S ∣ − 1 ) ! ∣ F ∣ ! [ f ( S ∪ { i } ) − f ( S ) ] \phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} \left[ f(S \cup \{i\}) - f(S) \right] ϕi=SF{i}F!S!(FS1)![f(S{i})f(S)]
where:

  • ϕ i \phi_i ϕi is the SHAP value for feature i i i,
  • F F F is the set of all features,
  • S S S is a subset of features that does not include i i i,
  • f ( S ) f(S) f(S) is the prediction using the feature subset S S S,
  • ∣ S ∣ |S| S is the size of subset S S S,
  • ∣ F ∣ |F| F is the total number of features.

This formula considers all possible subsets of features and the change in the prediction when feature (i) is added to each subset, weighted by the size of the subsets.

SHAP values are widely used for their ability to provide consistent and interpretable explanations of model predictions, making them a valuable tool for understanding and debugging complex machine learning models.

Understanding Base Value

In SHAP (SHapley Additive exPlanations), the base value is a crucial concept that serves as a reference point for understanding the contribution of each feature to the prediction. Here’s a detailed explanation of what the base value means and its significance:

Definition of Base Value

The base value, often referred to as the expected value or mean prediction, is the average prediction of the model over the entire training dataset. It represents the starting point or the baseline from which SHAP values measure the contribution of each feature.

Significance of the Base Value

  1. Reference Point for Interpretation: The base value acts as the reference point for the SHAP values. Each feature’s SHAP value shows how much that feature’s presence or value shifts the model’s prediction from this base value.
  2. Model Explanation: By comparing the base value with the actual prediction for a specific instance, SHAP values explain the difference. The sum of all SHAP values for a particular instance, when added to the base value, equals the model’s prediction for that instance.

Contextual Examples

Regression Models
  • Example: Suppose you have a model predicting house prices, and the base value is $300,000. This means that, on average, the model predicts a house price of $300,000 across all houses in the training dataset. For a specific house, if the model predicts $350,000, the SHAP values will explain how the features (e.g., number of bedrooms, location, etc.) contribute to increasing the prediction from $300,000 to $350,000.
Classification Models
  • Example: For a binary classification model predicting whether a customer will buy a product (yes/no), the base value might be the average predicted probability of a customer buying the product, say 0.2 (or 20%). For a specific customer, if the model predicts a probability of 0.8 (or 80%), the SHAP values will show how each feature (e.g., age, income, browsing history) contributes to increasing the probability from 0.2 to 0.8.

Visual Representation

  • Force Plot: In SHAP force plots, the base value is typically shown as a starting point on the left, with the contributions of individual features displayed as arrows pushing the prediction up or down from this base value. The sum of the base value and the SHAP values for all features gives the final prediction.
  • Summary Plot: While summary plots primarily show the distribution of SHAP values for each feature, understanding the base value helps interpret how features generally impact predictions across the dataset.

Mathematical Context

In mathematical terms, if ( \phi_i ) represents the SHAP value for feature (i) and ( \phi_0 ) represents the base value, the prediction ( f(x) ) for an instance ( x ) can be expressed as:

f ( x ) = ϕ 0 + ∑ i = 1 M ϕ i f(x) = \phi_0 + \sum_{i=1}^{M} \phi_i f(x)=ϕ0+i=1Mϕi
where:

  • ϕ 0 \phi_0 ϕ0 is the base value (mean prediction).
  • M M M is the number of features.
  • ∑ i = 1 M ϕ i \sum_{i=1}^{M} \phi_i i=1Mϕi is the sum of the SHAP values for all features, representing their combined contribution to the prediction.

Understanding the base value in SHAP provides a foundation for interpreting how individual features influence the model’s predictions, making the model’s behavior more transparent and interpretable.

Understanding SHAP Value

Positive and negative SHAP values indicate how each feature influences the prediction of a machine learning model. Here’s an elaboration on the differences between positive and negative SHAP values in the contexts of classification and regression models:

Regression Models

In regression models, the goal is to predict a continuous outcome. SHAP values indicate how each feature influences the predicted value.

  • Positive SHAP Values:

    • Interpretation: A positive SHAP value indicates that the feature increases the predicted value. This means the feature pushes the prediction higher than the baseline (average) prediction.
    • Example: For a model predicting house prices, if the feature “number of bedrooms” has a positive SHAP value, it means that having more bedrooms contributes to a higher predicted price.
  • Negative SHAP Values:

    • Interpretation: A negative SHAP value indicates that the feature decreases the predicted value. This means the feature pushes the prediction lower than the baseline prediction.
    • Example: For the same house price prediction model, if the feature “distance from the city center” has a negative SHAP value, it means that being further from the city center contributes to a lower predicted price.

Classification Models

In classification models, the goal is to predict a categorical outcome. SHAP values indicate how each feature influences the likelihood of a particular class.

  • Positive SHAP Values:

    • Interpretation: A positive SHAP value indicates that the feature increases the predicted probability of a specific class. This means the feature pushes the prediction towards that class.
    • Example: For a model predicting whether a loan will be approved or not, if the feature “income level” has a positive SHAP value for the “approved” class, it means that higher income increases the likelihood of the loan being approved.
  • Negative SHAP Values:

    • Interpretation: A negative SHAP value indicates that the feature decreases the predicted probability of a specific class. This means the feature pushes the prediction away from that class.
    • Example: In the same loan approval model, if the feature “number of past defaults” has a negative SHAP value for the “approved” class, it means that having more past defaults decreases the likelihood of the loan being approved.

Visual Representation in Both Contexts

  • Regression Models:

    • Force Plot: Shows how each feature’s SHAP value contributes to moving the prediction from the baseline to the final predicted value. Features with positive SHAP values push the prediction higher, while those with negative SHAP values push it lower.
    • Summary Plot: Displays the distribution of SHAP values for all features across all instances, illustrating which features generally increase or decrease the predictions.
  • Classification Models:

    • Force Plot: Visualizes how each feature’s SHAP value contributes to the predicted probability of a specific class. Positive SHAP values push the probability towards the target class, while negative SHAP values push it away.
    • Summary Plot: Similar to regression, it shows the distribution of SHAP values for all features, indicating their overall impact on the predicted probabilities of the classes.

Understanding SHAP values in the context of classification and regression models helps in interpreting how features influence the model’s predictions, thereby enhancing the transparency and trustworthiness of machine learning models.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/857296.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

虚拟机拖拽文档造成缓存过大

查看文件夹大小:du -h --max-depth1 缓存位置:~/.cache/vmware/drag_and_drop 删除:rm -fr ~/.cache/vmware/drag_and_drop 释放了3GB

自然语言NLP的基础处理

NLP基本处理从句子的情感分析、实体与实体直接的关系,句子结构来分析 情感分析 1.句子的情感分析找出句子表达的是正面、负面还是中性的情感。 情感分析的影响因素: 词语顺序:词语的顺序可以影响句子的整体情感。例如,“我喜欢…

网络安全:Web 安全 面试题.(文件上传漏洞)

网络安全:Web 安全 面试题.(文件上传漏洞) 网络安全面试是指在招聘过程中,面试官会针对应聘者的网络安全相关知识和技能进行评估和考察。这种面试通常包括以下几个方面: (1)基础知识:包括网络基础知识、操…

CVPR上新 | 从新视角合成、视频编解码器、人体姿态估计,到文本布局分析,微软亚洲研究院精选论文

编者按:欢迎阅读“科研上新”栏目!“科研上新”汇聚了微软亚洲研究院最新的创新成果与科研动态。在这里,你可以快速浏览研究院的亮点资讯,保持对前沿领域的敏锐嗅觉,同时也能找到先进实用的开源工具。 本周&#xff0…

python如何判断图片是否为空

如下所示: import cv2im cv2.imread(2.jpg) if im is None:print("图像为空") # cv2.imshow("ss", im) # cv2.waitKey(0)

编码规则UTF-8 和 UTF-16的区别

UTF-8 和 UTF-16 的设计背景与历史 为了更好地理解 UTF-8 和 UTF-16 的设计选择和背景,以下是两种编码方案的历史、设计动机和它们在计算机科学中的应用。 Unicode 的背景 在 Unicode 之前,不同的字符集和编码方案使得跨平台和国际化的文本处理变得复…

2024年AI+游戏赛道的公司和工具归类总结

随着人工智能技术的飞速发展,AI在游戏开发领域的应用越来越广泛。以下是对2024年AI+游戏赛道的公司和工具的归类总结,涵盖了从角色和场景设计到音频制作,再到动作捕捉和动画生成等多个方面。 2D与3D创作 2D创作工具:专注于角色和场景的平面设计,提供AI辅助的图案生成和风…

C++之thread_local变量

目录 1.C 的存储类型 1.1.存储周期(Storage duration) 1.2.存储类型说明符(Storage class specifiers) 1.3.存储类型说明符与存储周期的关系 2.thread_local简介 3.thread_local 应用 3.1.thread_local 与全局变量 3.2.th…

粘包拆包服务器

服务器&#xff1a; 创建个控制台应用 创建Server.cs internal class Server{TcpListener listen;public Server(IPAddress ip,int port) {listen new TcpListener(ip, port);}public void Start(){listen.Start(100);StartConnect(); }Dictionary<string,TcpClient>…

【2024德国工作】外国人在德国找工作是什么体验?

挺难的&#xff0c;德语应该是所有中国人的难点。大部分中国人进德国公司要么是做中国业务相关&#xff0c;要么是做技术领域的工程师。先讲讲人在中国怎么找德国的工作&#xff0c;顺便延申下&#xff0c;德国工作的真实体验&#xff0c;最后聊聊在今年的德国工作签证申请条件…

秀米排版的一些技巧

1.正文一般16字号 、默认字体、格式首行缩进 2.最后署名&#xff08;居中&#xff09; 文丨1234 图丨1234 排版丨1234 指导老师 | 1234 审核 |1234 信息学院研究生会宣传中心 宣 3.不必要的文字要删除 以及不必要的排版的画面 简简单单就ok 4.然后图片文字按顺序 5.最开始有个框…

Android AlarmManager 设定过去的时间会触发事件

Android AlarmManager 设定过去的时间会触发事件 在使用 AlarmManager 做每日定时任务时&#xff0c;发现如果设定的时间小于当前的系统时间&#xff0c;那么设定后会立刻收到一次定时任务回调。 我们设想的是设定的时间应该是明日的这个时间&#xff0c;但是如果打印出设定的…

【八股系列】说一下mobx和redux有什么区别?(React)

&#x1f389; 博客主页&#xff1a;【剑九 六千里-CSDN博客】 &#x1f3a8; 上一篇文章&#xff1a;【介绍React高阶组件&#xff0c;适用于什么场景&#xff1f;】 &#x1f3a0; 系列专栏&#xff1a;【面试题-八股系列】 &#x1f496; 感谢大家点赞&#x1f44d;收藏⭐评…

现代数字信号处理及其应用-常见结论

现代数字信号处理及其应用-常见结论 本文的结论均摘抄自 何子述、夏威等编著&#xff0c;《现代数字信号处理及其应用》&#xff0c;清华出版社出版。 解析信号信号预包络&#xff1b;基带信号信号复包络。BT法&#xff08;自相关谱估计法&#xff09;&#xff1a;间接法&…

双例集合(二)——双例集合的实现类之HashMap容器类

双例集合的常用实现类有HashMap和TreeMap两个&#xff0c;通过这两个类我们可以实现Map接口定义的容器&#xff0c;一般情况下使用HashMap容器类较多。 HashMap容器类是Map接口最常用的实现类&#xff0c;它的底层采用Hash算法来实现&#xff0c;这也就满足了键key不能重复的要…

Python:调用zabbix api,删除部分被监控主机

调用zabbix api&#xff0c;删除部分被监控主机。 简介代码部分配置文件config.jsonnamefile.txt 简介 当新主机上线时&#xff0c;我们可以通过自动注册功能&#xff0c;在zabbix中批量添加这些新主机。那当有主机需要下线时&#xff0c;我们又该如何在zabbix中批量删除这些主…

揭秘!速卖通、敦煌网、国际站出单背后的黑科技:自养号测评技术

在竞争激烈的跨境电商平台上&#xff0c;如亚马逊、速卖通、Lazada、Shopee、敦煌网、Temu、Shein、美客多和阿里国际等&#xff0c;稳定出单成为每位卖家共同追求的目标。为了实现这一目标&#xff0c;卖家需要从产品选择、运营策略和客户服务等多个维度进行全面考量&#xff…

华为重磅官宣:超9亿台、5000个头部应用已加入鸿蒙生态!人形机器人现身 专注AI芯片!英伟达挑战者Cerebras要上市了

内容提要 华为表示&#xff0c;盘古大模型5.0加持&#xff0c;小艺能力全新升级。小艺智能体与导航条融为一体&#xff0c;无处不在&#xff0c;随时召唤。只需将文字、图片、文档“投喂”小艺&#xff0c;即可便捷高效处理文字、识别图像、分析文档。 正文 据华为终端官方微…

采用string 及random库随机生成长度为32的字符串

要使用Python的string和random库来生成一个长度为32的随机字符串&#xff0c;其中包含大小写字母和数字&#xff0c;你可以按照以下方式编写代码&#xff1a; import string import random def generate_random_string(length32): """生成一个指定长度的随…

JavaWeb阶段学习知识点(一)

【参考视频】https://www.bilibili.com/video/BV1m84y1w7Tb?p=167&vd_source=38a16daddd38b4b4d4536e9c389e197f SpringBoot项目的创建和接口配置 做一个springboot项目,从创建项目到实现浏览器访问localhost:8080/hello返回字符串hello world的全流程 1. 创建项目 idea新…