DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程

DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程

flyfish

DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

DeepSORT(目标跟踪算法)中卡尔曼滤波器中的更新

DeepSORT(目标跟踪算法)中卡尔曼增益的理解

DeepSORT(目标跟踪算法)中的卡尔曼滤波 - 看了就会的状态转移矩阵

DeepSORT(目标跟踪算法)中的初始化卡尔曼滤波器的状态向量和协方差矩阵

DeepSORT(目标跟踪算法)中卡尔曼滤波器中的预测

DeepSORT(目标跟踪算法)中自由度决定卡方分布的形状

DeepSORT(目标跟踪算法)中的解三角方程计算标准化残差(解线性方程组)

DeepSORT(目标跟踪算法)中的计算观测值与状态估计的马氏距离

DeepSORT(目标跟踪算法)中的马氏距离详解(很详细)

DeepSORT(目标跟踪算法)中 可以设置阈值进行异常检测或目标跟踪的原因

DeepSORT(目标跟踪算法)中的数值表格与调参的关系

卡尔曼滤波的完整流程

1. 初始化

在第一个时刻,需要初始化状态向量和误差协方差矩阵:

  • 状态向量(State Vector) x 0 \mathbf{x}_0 x0:对系统初始状态的估计。
  • 误差协方差矩阵(Error Covariance Matrix) P 0 \mathbf{P}_0 P0:初始状态估计的不确定性。

2. 预测步骤(Prediction Step)

预测系统在下一个时刻的状态和误差协方差矩阵。

  • 预测状态(Predicted State) x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1 x ^ k ∣ k − 1 = A k − 1 x ^ k − 1 ∣ k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1x^k1∣k1+Bk1uk1其中, A k − 1 \mathbf{A}_{k-1} Ak1 是状态转移矩阵, B k − 1 \mathbf{B}_{k-1} Bk1 是控制输入矩阵, u k − 1 \mathbf{u}_{k-1} uk1 是控制输入。
  • 预测误差协方差矩阵(Predicted Error Covariance Matrix) P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1 P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1其中, Q k − 1 \mathbf{Q}_{k-1} Qk1 是过程噪声协方差矩阵。

3. 更新步骤(Update Step)

利用新测量数据更新预测的状态和误差协方差矩阵。

  • 卡尔曼增益(Kalman Gain) K k \mathbf{K}_k Kk K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1其中, H k \mathbf{H}_k Hk 是观测矩阵, R k \mathbf{R}_k Rk 是观测噪声协方差矩阵。
  • 更新状态(Updated State) x ^ k ∣ k \hat{\mathbf{x}}_{k|k} x^kk x ^ k ∣ k = x ^ k ∣ k − 1 + K k ( z k − H k x ^ k ∣ k − 1 ) \hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}) x^kk=x^kk1+Kk(zkHkx^kk1)其中, z k \mathbf{z}_k zk 是测量向量。
  • 更新误差协方差矩阵(Updated Error Covariance Matrix) P k ∣ k \mathbf{P}_{k|k} Pkk P k ∣ k = ( I − K k H k ) P k ∣ k − 1 \mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} Pkk=(IKkHk)Pkk1其中, I \mathbf{I} I 是单位矩阵。

4. 循环迭代

重复步骤2和步骤3,处理每个新的测量数据。

各个字母的含义

1. 预测步骤(Prediction Step)

预测步骤包括状态预测和误差协方差预测。

状态预测(State Prediction)

x ^ k ∣ k − 1 = A k − 1 x k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1xk1+Bk1uk1

  • x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1:预测的状态向量(在时间 k k k 时的先验估计)。
  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵,描述系统从时间 k − 1 k-1 k1 到时间 k k k 的动态。
  • x k − 1 \mathbf{x}_{k-1} xk1:在时间 k − 1 k-1 k1 时的状态向量(后验估计)。
  • B k − 1 \mathbf{B}_{k-1} Bk1:控制输入矩阵,描述控制输入对系统状态的影响。
  • u k − 1 \mathbf{u}_{k-1} uk1:在时间 k − 1 k-1 k1 时的控制输入向量。
误差协方差预测(Error Covariance Prediction)

P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1

  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵(在时间 k k k 时的先验估计的不确定性)。
  • P k − 1 ∣ k − 1 \mathbf{P}_{k-1|k-1} Pk1∣k1:在时间 k − 1 k-1 k1 时的误差协方差矩阵(后验估计的不确定性)。
  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵。
  • Q k − 1 \mathbf{Q}_{k-1} Qk1:过程噪声协方差矩阵,描述系统过程噪声的不确定性。

2. 更新步骤(Update Step)

更新步骤包括计算卡尔曼增益、更新状态估计和更新误差协方差矩阵。

计算卡尔曼增益(Kalman Gain Calculation)

K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1

  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵,描述测量值对状态估计的影响。
  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵。
  • H k \mathbf{H}_k Hk:观测矩阵,描述状态向量到测量向量的映射。
  • R k \mathbf{R}_k Rk:测量噪声协方差矩阵,描述测量噪声的不确定性。
更新状态估计(State Update)

x k ∣ k = x ^ k ∣ k − 1 + K k ( z k − H k x ^ k ∣ k − 1 ) \mathbf{x}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}) xkk=x^kk1+Kk(zkHkx^kk1)

  • x k ∣ k \mathbf{x}_{k|k} xkk:更新后的状态向量(在时间 k k k 时的后验估计)。
  • x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1:预测的状态向量。
  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵。
  • z k \mathbf{z}_k zk:在时间 k k k 时的实际测量向量。
  • H k \mathbf{H}_k Hk:观测矩阵。
  • H k x ^ k ∣ k − 1 \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1} Hkx^kk1:预测测量值。
更新误差协方差矩阵(Error Covariance Update)

P k ∣ k = ( I − K k H k ) P k ∣ k − 1 \mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} Pkk=(IKkHk)Pkk1

  • P k ∣ k \mathbf{P}_{k|k} Pkk:更新后的误差协方差矩阵(在时间 k k k 时的后验估计的不确定性)。
  • I \mathbf{I} I:单位矩阵。
  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵。
  • H k \mathbf{H}_k Hk:观测矩阵。
  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/852546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

海南云亿商务咨询有限公司解锁抖音电商新纪元

在当今数字化浪潮中,抖音电商以其独特的魅力和强大的用户基础,迅速成为企业营销的新宠。海南云亿商务咨询有限公司,作为专注于抖音电商服务的领先企业,凭借专业的团队和丰富的经验,为众多企业提供了高效、精准的电商服…

实用的命令行记录

重启system_server adb shell "stop,start"获取当前手机所有feature adb shell pm list featuresdump某个安装包信息 adb shell dumpsys package com.test.demo 查看安装包AndroidManifest配置 aapt dump xmltree xxx.apk AndroidManifest.xml 查看某个安装包的安…

Keepalived介绍、安装和简单使用

目录 1 Keepalived1.1 keepalived介绍1、keepalived原理2、keepalived原理3、VRRP工作模式 1.2 keepalived安装配置1、安装配置2、keepalived配置文件详解3、通过配置文件实现资源监控 1.3 案例1、nginx keepalived 实现高可用2、nginx keepalived 实现高可用 - 非抢占模式 总…

嵌套查询(一)-谓词IN、量词ANY、量词ALL、比较运算符

一、在多个表之间进行数据查询,除了可以使用连接查询之外,也可以使用嵌套查询,那么什么是嵌套查询呢?如何使用嵌套查询呢? 1、将一个SELECT-FROM查询,嵌套在另一个SELECT查询语句中,那么这个SE…

swagger美化

参考资料 https://doc.xiaominfo.com/docs/quick-start/start-knife4j-version 版本选择 需要先确认springboot版本,再确认swagger版本是2还是3,最后还要关注Springfox的版本。 确认springboot版本的方法 简单的看当前项目使用的就行 例子 https:…

前端面试项目细节重难点(已工作|做分享)(九)

面试官:请你讲讲你在工作中如何开发一个新需求,你的整个开发过程是什么样的? 答:仔细想想,我开发新需求的过程如下: (1)第一步:理解需求文档: 首先&#x…

这三款使用的视频、图片设计工具,提供工作效率

Videograp Videograp是一款专注于视频生成的工具,特别适合需要快速剪辑和编辑视频的用户。Videograp具备以下特点: 影音比例转换:Videograp支持调整视频的分辨率和比例,使其更适合不同的播放环境和设备。 AI快剪:该工…

期望14K,某小公司java社招面试经历

面经哥只做互联网社招面试经历分享,关注我,每日推送精选面经,面试前,先找面经哥 面试的是一家几百人的公司,基本面试的考察有八股文,也有按照项目问你的,总的来说比较全面吧 1、java代理模式 …

k8s 自动伸缩机制-------HPA 超详细解读

目录 在K8s中扩缩容分为两种: 前言 弹性伸缩是根据用户的业务需求和策略,自动“调整”其“弹性资源”的管理服务。通过弹性伸缩功能,用户可设置对定时、周期或监控策略,恰到好处地增加或减少“弹性资源”,并完成实例…

Android native层的线程分析(C++),以及堆栈打印调试

文章目录 Android native层的线程分析(C),多线程实现1.native线程的创建第一部分:android_thread模块第二部分:linux_thread模块 2.测试linux_thread模块3.Android native的Thread类3.1源码分析 4.native层堆栈调试方法1. 引用库2. 头文件3. …

前端实现获取后端返回的文件流并下载

前端实现获取后端返回的文件流并下载 方法一:使用Axios实现文件流下载优点缺点 方法二:使用封装的Request工具实现文件流下载优点缺点 方法三:直接通过URL跳转下载优点缺点 结论 在前端开发中,有时需要从后端获取文件流&#xff0…

Python【问题 02】pip 国内镜像源配置(Windows+Linux)

pip 国内镜像源配置 1.Windows1.1 添加文件pip.in1.2 文件放置1.3 验证安装1.4 其他 2.Linux2.1 使用pip命令更改2.2 手动更改配置文件 3.问题处理 1.Windows 1.1 添加文件pip.in [global] index-url http://mirrors.aliyun.com/pypi/simple/ [install] trusted-host mirro…

性能测试3【搬代码】

1.Linux服务器性能分析命令及详解 2.GarafanainfluxDB监控jmeter数据 3.GarafanaPrometheus监控服务器和数据库性能 4.性能瓶颈分析以及性能调优方案详解 一、无界面压测时, top load average:平均负载 htop 二、Garafana监控平台 传统项目:centosphpm…

合肥工业大学内容安全实验一:爬虫|爬新闻文本

✅作者简介:CSDN内容合伙人、信息安全专业在校大学生🏆 🔥系列专栏 :合肥工业大学实验课设 📃新人博主 :欢迎点赞收藏关注,会回访! 💬舞台再大,你不上台,永远是个观众。平台再好,你不参与,永远是局外人。能力再大,你不行动,只能看别人成功!没有人会关心你付…

网站接口是怎么开发的,开发之后是怎么用的

网站接口的开发流程 1.确定接口需求 在开发接口之前我们先要知道,要开发什么样的接口,这个接口是用来干什么的,得先知道相关的需求,才能规划下一步,比如客户想要一个文章列表,那么我们就知道这个需求…

【Obsidian】工具使用

想把obisian里面的学习记录传上来,md文件显示不了图片,但是这个学习记录里面的图片太多了,无法手动解决。解决图片插入格式问题,使得输出的md文件可以正确显示图片:Obsidian图片插入格式问题解决

Mybatis框架配置文件收录总结(详解附代码版)

Mybatis框架配置收录(详解版) MybatisUtils详细配置说明 package com.lanyy.utils;//import javax.annotation.Resource;import org.apache.ibatis.io.Resources; import org.apache.ibatis.session.SqlSession; import org.apache.ibatis.session.Sql…

Web面试前端开发:深度解析与实用指南

Web面试前端开发:深度解析与实用指南 在数字化快速发展的今天,Web前端开发已成为求职市场的一大热门岗位。对于求职者而言,如何通过一场面试充分展示自己的前端技能与素养,成为了他们面临的重要挑战。本文将围绕Web面试前端开发的…

kettle从入门到精通 第六十九课 ETL之kettle kettle cdc mysql,轻松实现增量同步

1、之前kettle cdc mysql的时候使用的方案是canalkafkakettle,今天我们一起学习下使用kettle的插件Debezium直接cdc mysql。 注:CDC (Change Data Capture) 是一种技术,用于捕获和同步数据库中的更改。 1)Debezium步骤解析mysql b…

基于Python+OpenCV高速公路行驶车辆的速度检测系统

简介: 基于Python和OpenCV的高速公路行驶车辆的速度检测系统旨在实时监测高速公路上的车辆,并测量它们的速度。该系统可以用于交通监控、道路安全管理等领域,为相关部门提供重要的数据支持。 系统实现: 视频流输入:系…