哈夫曼树学习

哈夫曼树(Huffman Tree)是一种特殊的二叉树,它根据给定的权值构造而成,并且其带权路径长度(WPL)达到最小。在计算机数据处理中,哈夫曼树常用来进行无损数据压缩,特别是通过哈夫曼编码实现。

定义

给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,则称这样的二叉树为最优二叉树,也称为哈夫曼树。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

构造

哈夫曼树的构造过程通常使用自底向上的方法。首先,将给定的权值从小到大排序,然后选取前两个最小的权值作为两个子节点,将它们的和作为父节点的权值,并将这两个子节点从序列中删除,将其父节点的权值加入序列中。然后,重新对序列进行排序,并重复上述步骤,直到序列中只剩下一个元素为止。这个元素就是哈夫曼树的根节点的权值。

性质

  1. 带权路径长度(WPL)最小:哈夫曼树的WPL是所有可能的二叉树中最小的。
  2. 权值越大的节点离根节点越近:这是为了使得出现频率高的节点(即权值大的节点)的编码长度更短,从而实现压缩的目的。

应用

哈夫曼树的主要应用之一是哈夫曼编码(Huffman Coding),它是一种可变长度编码方法。在哈夫曼编码中,出现频率高的符号使用较短的编码,而出现频率低的符号使用较长的编码。这样,编码后的字符串的平均长度会降低,从而达到无损压缩数据的目的。哈夫曼编码在数据通信、文件压缩等领域有着广泛的应用。

当然,以下是一些关于哈夫曼树的更多小知识点:

  1. 路径和路径长度:在树中,一个结点和另一个结点之间的分支即为这两个结点之间的路径;路径长度即为树中路径上的分支数目,即路径上所经过的边的个数。
  2. 权值:为树中每个叶子结点(度为1的结点)赋予一个数值,该值称为叶子结点的权值,简称为权。
  3. 带权路径长度(WPL):叶子结点的权值与树的根结点到该叶子结点之间的路径长度的乘积称为叶子结点的带权路径长度。整棵树的带权路径长度则是所有叶子结点的带权路径长度之和。
  4. 哈夫曼编码:哈夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码。出现频率高的符号使用较短的编码,出现频率低的符号使用较长的编码。这种编码方法使得编码后的字符串的平均长度降低,从而达到无损压缩数据的目的。
  5. 构造过程:构造哈夫曼树的过程主要包括初始化、选择、合并和重复等步骤。首先,将n个权值看作是n棵二叉树的根节点,构造n棵只有一个结点的二叉树。然后,在每次迭代中,选择权值最小的两棵树作为左右子树,构造一棵新的二叉树,并将这两棵树的权值相加作为新树的权值。重复这个过程,直到所有的树都被选中,最终构造出一棵哈夫曼树。
  6. 实际应用:哈夫曼树在实际中有许多应用,包括数据压缩、文件存储、图像处理、通信网络和数据库优化等。例如,在数据压缩中,哈夫曼树常用于实现哈夫曼编码,从而减少数据的大小并提高传输效率。
  7. 错误构造:在构造哈夫曼树时,可能会犯一些常见的错误。例如,在选择子树时不是选择根结点权值最小的两棵二叉树,或者没有严格按照哈夫曼算法进行构造等。这些错误

 

public class TriElement {  // 数据字段,通常用于存储字符的频率(在哈夫曼编码中)  int data;  // 父节点的索引,在数组中引用父节点  int parent;  // 左子节点的索引,在数组中引用左子节点  int left;  // 右子节点的索引,在数组中引用右子节点  int right;  // 构造方法,接受数据、父节点、左子节点和右子节点的索引  public TriElement(int data, int parent, int left, int right) {  super(); // 调用父类(Object)的无参构造方法,这是隐式的,通常可以省略  this.data = data; // 初始化当前对象的data字段  this.parent = parent; // 初始化当前对象的parent字段  this.left = left; // 初始化当前对象的left字段  this.right = right; // 初始化当前对象的right字段  }  // 另一个构造方法,仅接受数据字段,其余字段默认为-1(表示没有父节点或子节点)  public TriElement(int data) {  this(data, -1, -1, -1); // 调用上面的构造方法,并将parent、left和right设置为-1  }  // 重写toString方法,返回当前对象的字符串表示形式  // 通常用于调试或日志记录  public String toString() {  return "(" + this.data + "," + this.parent + "," + this.left + "," + this.right + ")";  }  // 判断当前节点是否是叶子节点的方法  // 在哈夫曼编码中,叶子节点通常代表具体的字符  public boolean isLeaf() {  // 如果左子节点和右子节点的索引都是-1,则表示这是一个叶子节点  return this.left == -1 && this.right == -1;  }  
}

在这个类中,TriElement代表哈夫曼树中的一个节点。每个节点都有一个数据字段(通常用于存储字符的频率),以及指向其父节点、左子节点和右子节点的索引。这个类还提供了两个构造方法来创建新的TriElement实例,以及一个toString方法用于返回节点的字符串表示形式,和一个isLeaf方法用于判断节点是否是叶子节点

// 这是一个Huffman树类的实现  
public class HuffmanTree {  // 字符集,这里用A到Z的字符代表,但实际上它只用于索引,真正的字符频率在TriElement的data字段中  private String charset;  // 存储Huffman树节点的数组  private TriElement[] element;  // 构造函数,用于根据字符频率数组构建Huffman树  public HuffmanTree(int[] weights) {  // 初始化字符集为A到Z,注意这里假设了weights数组的长度就是字符集的大小  this.charset = "";  int n = weights.length;  for (int i = 0; i < weights.length; i++)  this.charset += (char) ('A' + i);  // 初始化节点数组,大小为2n-1(因为每次合并都会增加一个节点)  this.element = new TriElement[2 * n - 1];  // 初始化叶子节点,每个叶子节点对应一个字符频率  for (int i = 0; i < n; i++)  this.element[i] = new TriElement(weights[i]);  // 构建Huffman树,通过不断合并频率最小的两个节点  for (int i = n; i < 2 * n - 1; i++) {  int min1 = Integer.MAX_VALUE, min2 = min1;  int x1 = -1, x2 = -1;  // 找到两个频率最小的节点  for (int j = 0; j < i; j++) {  if (this.element[j].parent == -1) { // 确保只考虑尚未合并的节点  if (this.element[j].data < min1) {  min2 = min1;  x2 = x1;  min1 = this.element[j].data;  x1 = j;  } else if (this.element[j].data < min2) {  min2 = this.element[j].data;  x2 = j;  }  }  }  // 将找到的两个节点设置为新节点的子节点,并创建新节点  this.element[x1].parent = i;  this.element[x2].parent = i;  this.element[i] = new TriElement(min1 + min2, -1, x1, x2);  }  }  // 根据节点的索引,生成对应的Huffman编码  private String huffmanCode(int i) {  // 假设Huffman编码的最大长度为8(这个长度通常是根据实际应用场景设定的)  int n = 8;  char code[] = new char[n];  // 从根节点开始,沿着树向下遍历,直到找到叶子节点  int child = i, parent = this.element[child].parent;  for (int index = n - 1; parent != -1; index--) {  // 如果当前节点是父节点的左子节点,则编码为'0',否则为'1'  code[index] = (this.element[parent].left == child) ? '0' : '1';  child = parent;  parent = this.element[child].parent;  }  // 返回从第一个非零字符开始到字符串末尾的子字符串  return new String(code, index + 1, n - 1 - index);  }  // 返回Huffman树的字符串表示形式,包括节点数组和每个字符的Huffman编码  public String toString() {  String str = "Huffman树的节点数组";  for (int i = 0; i < this.element.length; i++)  str += this.element[i].toString() + "";  str += "\nHuffman编码:";  // 遍历字符集,为每个字符生成Huffman编码并添加到字符串中  for (int i = 0; i < this.charset.length(); i++)  str += this.charset.charAt(i) + ":" + this.huffmanCode(i) + ",";  return str;  }  public String encode(String text)  
{  String compressed = ""; // 初始化压缩后的字符串为空  for(int i = 0; i < text.length(); i++) // 遍历输入文本的每个字符  {  int j = text.charAt(i) - 'A'; // 假设文本只包含大写字母A-Z,将字符转换为索引  compressed += this.huffmanCode(j); // 获取该字符的Huffman编码并添加到压缩字符串中  }  return compressed; // 返回压缩后的字符串  
}
public String decode(String compressed)  
{  String text = ""; // 初始化解码后的文本字符串为空  int node = this.element.length - 1; // 从Huffman树的根节点开始  for(int i = 0; i < compressed.length(); i++) // 遍历压缩字符串的每个字符  {  if(compressed.charAt(i) == '0')  node = element[node].left; // 如果编码字符是'0',则向左子节点移动  else  node = element[node].right; // 如果编码字符是'1',则向右子节点移动  if(element[node].isLeaf()) // 如果当前节点是叶子节点  {  text += this.charset.charAt(node - this.element.length / 2); // 将叶子节点对应的字符添加到文本中  node = this.element.length - 1; // 重置为根节点,准备解码下一个字符  }  }  return text; // 返回解码后的文本字符串  
}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/834313.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何修复连接失败出现的错误651?这里提供修复方法

错误651消息在Windows 7到Windows 11上很常见&#xff0c;通常会出现在一个小的弹出窗口中。实际文本略有不同&#xff0c;具体取决于连接问题的原因&#xff0c;但始终包括文本“错误651”。 虽然很烦人&#xff0c;但错误651是一个相对较小的问题&#xff0c;不应该导致计算…

C#调用电脑摄像头拍照

1.打开VS2019&#xff0c;新建一个Form窗体&#xff0c;工具->NuGet包管理工具->管理解决方案的NuGet包&#xff0c;在浏览里搜索AForge.Controls、AForge.Video.DirectShow&#xff0c;安装AForge.Controls和AForge.Video.DirectShow 2.安装AForge组件完成后&#xff0c…

docker-compose集成elasticsearch7.17.14+kibana7.17.14

1.docker和compose版本必须要高 2.准备ik分词器&#xff08;elasticsearch-analysis-ik-7.17.14&#xff09;&#xff0c;下面会用到 https://github.com/infinilabs/analysis-ik/releases?page2 3.配置es-compose.yml&#xff08;切记映射容器内路径不能更改,es和kibana服务…

git开发工作流程

git开发工作流程 &#xff08;1&#xff09;先将远程代码pull到本地 &#xff08;2&#xff09;在本地上分支上进行开发 &#xff08;3&#xff09;开发完之后&#xff0c;push到远程分支 &#xff08;4&#xff09;由远程的master进行所有分支合并

LeetCode例题讲解:只出现一次的数字

给你一个 非空 整数数组 nums &#xff0c;除了某个元素只出现一次以外&#xff0c;其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题&#xff0c;且该算法只使用常量额外空间。 示例 1 &#xff1a; 输入&#xff…

浅谈工商业储能发展下 防逆流互感器的优势

安科瑞 王盼盼 18721098782 随着新能源政策的推动和全球能源转型的需求&#xff0c;逆变器行业正在经历快速发展。其中&#xff0c;防逆流装置作为逆变器的重要组成部分&#xff0c;其互感器的选择对于逆变器的性能和稳定性至关重要。本文将从逆变器厂家制作防逆流装…

邦芒简历:避免无缘面试的4种常见简历问题

问题一&#xff1a;重点不明确 一份成功的简历应该明确突出应聘者的核心竞争力和目标职位。很多求职者虽然能力出众&#xff0c;但在撰写简历时未能有效突出自己的优势和目标。如果简历看起来适合任何职位和任何公司&#xff0c;那么它给招聘者的印象就是求职者缺乏明确的职业规…

激光跟踪仪在石油化工领域高效应用

管板式换热器是一种实现物料之间热量传递的节能设备&#xff0c;在石油化工行业生产过程中扮演着重要的角色。无论是在提高生产效率&#xff0c;保证产品质量还是节约能源方面&#xff0c;都发挥着重要作用。 测量需求 管板式热交换器内部有多个管板和折流板&#xff0c;每一…

联机负载-性能测试基础

联机负载-性能测试基础 前置脚本 Action() {int iter_num 0;web_url("webtours", "URLhttp://192.168.30.131:1080/webtours", "TargetFrame", "Resource0", "RecContentTypetext/html", "Referer", "Sna…

IP SSL证书申请教程:实现HTTPS加密访问

随着网络安全意识的提高&#xff0c;HTTPS加密访问已经成为网站安全性的重要标准。通过安装SSL证书&#xff0c;网站可以实现数据的加密传输&#xff0c;有效保护用户隐私和数据安全。本文将详细介绍如何为IP地址申请SSL证书&#xff0c;并实现HTTPS加密访问。 一、准备工作 …

vue项目启动后页面显示‘Cannot GET /’

1、npm run dev命令启动项目的时候没有报错&#xff0c;页面打开却提示 Cannot GET / 2.这个时候只需要找到config文件夹下面的index.js文件。把assetsPublicPath字符串的&#xff1a;‘./’修改成 ‘/’就行了。修改完之后记得关闭项目&#xff0c;然后重新启动。不然不会生效…

【项目经验】雪花算法与时钟回拨问题解决

一、背景 4月10日晚,因某方案需要,某同事将服务器时间由4月10日 18:51分改成了4月11日18:51; 修改几分钟后触发多个业务线阈值报警,大量客诉进线; 某同事发现修改时间时未摘量,迅速将时间恢复到正常:4月10日 18:57,并将该服务器部署所有的docker实例重启; …

UE5材质基础(2)——数学节点篇1

UE5材质基础&#xff08;2&#xff09;——数学节点篇1 目录 UE5材质基础&#xff08;2&#xff09;——数学节点篇1 Add节点 Append节点 Abs节点 Subtract节点 Multiply节点 Divide节点 Clamp节点 Time节点 Lerp节点 Add节点 快捷键&#xff1a;A鼠标左键 值相加…

董宇辉说:能改变的全力以赴,不能改变的泰然处之。

能改变的全力以赴&#xff0c;不能改变的泰然处之。 董宇辉语录&#xff1a;当你成长的过程中呢&#xff0c;能改变的因素请你全力以赴&#xff0c;不能改变的因素&#xff0c;请你淡然处之&#xff0c;非淡泊无以明志&#xff0c;非宁静无以致远&#xff0c;这是当年诸葛亮给…

WPF中页面加载时由于TreeView页面卡顿

示例&#xff1a;右侧界面的数据根据左侧TreeView的选项加载不同的数据&#xff0c;页面加载时会把所有的数据加载一遍&#xff0c;导致页面卡顿。 解决办法&#xff1a; <Setter Property"IsSelected" Value"{Binding IsSelected}"/>

机器学习(二) ----------K近邻算法(KNN)+特征预处理+交叉验证网格搜索

目录 1 核心思想 1.1样本相似性 1.2欧氏距离&#xff08;Euclidean Distance&#xff09; 1.3其他距离 1.3.1 曼哈顿距离&#xff08;Manhattan Distance&#xff09; 1.3.2 切比雪夫距离&#xff08;Chebyshev distance&#xff09; 1.3.3 闵式距离&#xff08;也称为闵…

Python中tkinter编程入门2

Python中tkinter编程入门1-CSDN博客中使用tkinter模块的Tk()创建了一个窗口&#xff0c;可以通过编程设置窗口的标题、大小和位置以及背景色。 1 设置窗口标题 图1所示的代码可以设置窗口标题。 图1 设置窗口标题 通过Tk的实例win调用title()方法&#xff0c;该方法的作用是…

中霖教育:中级经济师值得考吗?

中级经济师是众多职称考试中比较热门的一个&#xff0c;其合格证书由人社部亲自颁发&#xff0c;象征着权威与认可。 中级经济师考试通过之后有很多的福利待遇&#xff0c;如&#xff1a;加薪升职、技能补贴、个税扣除、积分落户等等&#xff0c;具体内容可参考文中介绍&#…

广东佛山在线教育系统,数学教育机构线上课程怎么写推广文案?

对教育机构来说&#xff0c;对课程进行推广是很重要的&#xff0c;市面上的课程有很多&#xff0c;如果不是已经在这个行业已经有了一些名气的课程&#xff0c;是很难盈利的&#xff0c;这就需要进行推广&#xff0c;那线上课程怎么写推广文案&#xff1f; 第一点&#xff1a;认…