JVM 方法调用之方法分派

JVM 方法调用之方法分派

文章目录

  • JVM 方法调用之方法分派
    • 1.何为分派
    • 2.静态分派
    • 3.动态分派
    • 4.单分派与多分派
    • 5.动态分派的实现

1.何为分派

在上一篇文章《方法调用之解析调用》中讲到了解析调用,而解析调用是一个静态过程,在类加载的解析阶段就确定了方法的直接引用。很明显,其他不满足解析调用的方法调用是如何确定其直接引用的呢,这就涉及到本篇文章所讲的重点概念,分派(Dispatch)。分派即可能是静态的也可能是动态的,根据分派依据的宗量数可分为单分派和多分派。所以两两组合就构成了,静态单分派、静态多分派、动态单分派及动态多分派4种情况。

方法的接受者与方法的参数统称为方法宗量。具体的宗量数如何确定,请往下看。

在往下讲解之前,需要讲明一下两个重要的概念。

Object str = new String()

以上代码中,我们把 Object 称为变量str 的“静态类型”(Static Type)或者“外观类型”(Apparent Type),后面的String 则称之为变量str的“实际类型”(Actual Type)或者“运行时类型”(Runtime Type)。因为静态类型是编译器可知的,而实际类型是在编译器不一定可知,在运行时才能真正完全确定,如下DEMO。

// 在运行前,(new Random()).nextBoolean的值是无法预知的,运行后才可得到具体值
Object obj = (new Random()).nextBoolean ? new String() : new Integer();

2.静态分派

所有依赖静态类型来决定方法调用版本的分派动作,都称为静态分派。

静态分派最典型的应用就是方法重载(Overload),静态分派发生在编译阶段,因此确定静态分派的动作实际上不是由虚拟机来执行。另外需要注意的是,Javac编译器虽然能确定方法重载的版本,但是很多情况下,这个重载版本并不是唯一的,往往只能确定一个“相对更加合适”的版本。产生这种模糊结论的主要原因就是字面量天生的模糊性,它没有显式的静态类型,它的静态类型只能通过语义、语法规则去历届和推断。

案例代码

public class StaticDispatch {public static void main(String[] args) {say('a');}public static final void say(char c){System.out.println("char");}public static final void say(int c){System.out.println("int");}public static final void say(long c){System.out.println("long");}public static final void say(float c){System.out.println("float");}public static final void say(double c){System.out.println("double");}public static final void say(Character c){System.out.println("Character");}public static final void say(Serializable c){System.out.println("Serializable");}public static final void say(Object c){System.out.println("Object");}public static final void say(char... chars){System.out.println("char...");}}

上述代码,由于 ‘a’ 是一个char类型的数据,所以运行结果为:

char

如果我们将say(char c)方法注释掉,那么 ‘a’ 也可以表示为字符的Unicode编码数值,即97,所以 ‘a’ 也可以表示数字97,此时 ‘a’ 发生了自动类型转换,会选择参数类型为 int 的重载版本,运行结果为:

int

如果此时再将say(int c) 方法注释掉,那么 ‘a’ 将会再发生一次自动类型转换,进一步转型为 long,输出结果如下。同理,相继注释掉后面参数类型为基本类型的重载方法,则会按照 **char > int > long > float > double **的顺序转型匹配,但是不会存在转型至byteshort类型(不安全)。

long

如果将say(long c)say(float c)say(double c)都注释掉,此时 ‘a’ 将会自动装箱为包装类型 Character,所以输出结果为:

Character

如果再将say(Character c) 注释掉,那么此时 ‘a’ 转换为包装类型 Character 后,会转换为其实现的接口,由于 SerializableCharacter 实现的一个接口,所以输出结果为:

Serializable

同理,‘a’ 转换为包装类型 Character 后,会转型为其父类,根据继承关系从下往上找,此时输出结果为:

Object

最后,变长参数的重载优先级是最低的,注释掉其他所有重载方法后,输出结果:

char...

3.动态分派

动态分派发生在运行期间,根据其实际类型确定方法调用版本。

动态分派与Java语言多态性的一个重要体现-重写(Override)关系密切。下面我们先以案例代码结合讲解。

案例代码

public class DynamicDispatch {static abstract class Human{public abstract void say();}static class Man extends Human{@Overridepublic void say() {System.out.println("Man");}}static class Woman extends Human{@Overridepublic void say() {System.out.println("Woman");}}public static void main(String[] args) {Human man = new Man();Human woman = new Woman();man.say();woman.say();}}

运行结果想必都知道:

Man
Woman

但是我们反编译字节码,可以对应的两条方法调用的符号引用(Human.say:()V)都是一样的:

 public static void main(java.lang.String[]);descriptor: ([Ljava/lang/String;)Vflags: (0x0009) ACC_PUBLIC, ACC_STATICCode:stack=2, locals=3, args_size=10: new           #2                  // class com/mytest/project/method/dispatch/DynamicDispatch$Man3: dup4: invokespecial #3                  // Method com/mytest/project/method/dispatch/DynamicDispatch$Man."<init>":()V7: astore_18: new           #4                  // class com/mytest/project/method/dispatch/DynamicDispatch$Woman11: dup12: invokespecial #5                  // Method com/mytest/project/method/dispatch/DynamicDispatch$Woman."<init>":()V15: astore_216: aload_117: invokevirtual #6                  // Method com/mytest/project/method/dispatch/DynamicDispatch$Human.say:()V20: aload_221: invokevirtual #6                  // Method com/mytest/project/method/dispatch/DynamicDispatch$Human.say:()V24: returnLineNumberTable:line 30: 0line 31: 8line 32: 16line 33: 20line 34: 24LocalVariableTable:Start  Length  Slot  Name   Signature0      25     0  args   [Ljava/lang/String;8      17     1   man   Lcom/mytest/project/method/dispatch/DynamicDispatch$Human;16       9     2 woman   Lcom/mytest/project/method/dispatch/DynamicDispatch$Human;MethodParameters:Name                           Flagsargs
}

虽然符号引用一样,但是其真正的调用版本并不相同。所以解决问题的关键,我们可以从 invokevirtual 指令的是如何实现多态查找的过程入手,根据《Java虚拟机规范》,invokevirtual 指令的运行时解析过程大致可分如下几步:

1)将当前线程的操作数栈的栈顶元素指向的对象的实际类型记做C。

2)如果在类型C 中找到与常量中的简单名称和描述符都相同的方法,则进行访问权限效验,如果通过则返回该方法的直接引用;不通过则throws an IllegalAccessError

3)否则,按照继承关系从下往上依次对C的父类进行搜索和权限效验。

4)否则,如果没有找到合适的方法(找到了抽象方法),则会throws an AbstractMethodError

4.单分派与多分派

单分派是根据一个宗量对目标方法进行选择,多分派则是根据多余一个宗量对目标方法进行选择。光从定义上可能难以理解,下面结合案例代码进行讲解。

案例代码

public class Dispatch {static class QQ{}static class _360{}static class Father{public void hardChoice(QQ arg){System.out.println("Father QQ");};public void hardChoice(_360 arg){System.out.println("Father _360");};}static class Son extends Father{public void hardChoice(QQ arg){System.out.println("Son QQ");};public void hardChoice(_360 arg){System.out.println("Son _360");};}public static void main(String[] args) {Father father = new Father();Father son = new Son();father.select(new QQ());  // Dispatch$Father.select:(LQQ;)Vson.select(new _360()); // Dispatch$Father.select:(L_360;)V}}

运行结果:

Father QQ
Son _360

在编译期,也就是静态分派过程中,选择目标方法的依据有两点:一是静态类型是 Father 还是 Son,二是方法参数是 QQ 还是 _360。很显然,这决定了最终产生的方法调用的字面量,因为是根据两个宗量进行分派的,所以在Java语言中静态分派属于多分派类型。

在运行期,也就是动态分派的过程中。实际分派起决定性作用的就是方法接受者的实际类型,因为此时的调用方法的签名已定(select:(LQQ;)V),而唯一需要进行选择的就是方法接受者,所以在Java语言里动态分派属于单分派。

5.动态分派的实现

动态分派是执行非常频繁的动作,而且动态分派的方法调用版本需要运行时在接收者类型的方法元数据中搜索合适的目标方法,因此,JVM 实现基于执行性能的考虑,真正运行时一般不会如此频繁地去反复搜索类型元数据。面对这种情况,一种基础而且常见的优化手段是为类型在方法区中建立一个虚方法表(VirtualMethod Table,也称为vtable,与此对应的,在 invokeinterface 执行时也会用到接口方法表 —— Interface Method Table,简称 itable),使用虚方法表索引来代替元数据查找以提高性能。我们先看看上一节案例代码所对应的虚方法表结构示例,如图所示。

在这里插入图片描述

虚方法表中存放着各个方法的实际入口地址。如果某个方法在子类中没有被重写,那子类的虚方法表里面的地址入口和父类相同方法的地址入口是一致的,都指向父类的实现入口。如果子类中重写了这个方法,子类方法表中的地址将会替换为指向子类实现版本的入口地址。Son 重写了来自 Father 的全部方法,因此 Son 的方法表没有指向 Father 类型数据的箭头。但是 Son 和 Father 都没有重写来自 Object 的方法,所以它们的方法表中所有从 Object 继承来的方法都指向了 Object 的数据类型。

为了程序实现上的方便,具有相同签名的方法,在父类、子类的虚方法表中都应当具有一样的索引序号,这样当类型变换时,仅需要变更查找的方法表,就可以从不同的虚方法表中按索引转换出所需的入口地址。方法表一般在类加载的连接阶段进行初始化,准备了类的变量初始值后,虚拟机会把该类的方法表也初始化完毕

方法表是分派调用的“稳定优化”手段,虚拟机除了使用方法表之外,在条件允许的情况下,还会使用内联缓存(Inline Cache)和基于“类型继承关系分析”(Class Hierarchy Analysis,CHA)技术的守护内联(Guarded Inlining)两种非稳定的“激进优化”手段来获得更高的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/823628.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ECharts:五大卓越在线示例库助力高效数据可视化开发

1. ECharts官方示例库 ECharts官网提供的示例库是最权威、最新的展示平台&#xff0c;涵盖了所有基础和高级图表类型&#xff0c;每个示例都配有详尽的代码解释和配置说明。开发者可以直接查看源代码&#xff0c;复制粘贴后稍加修改就能应用于实际项目中。 2. Make A Pie - EC…

【笔试训练】day4

不到5分钟写完&#xff0c;今天的题又又又难一点啦! 1.Fibonacci数列 思路&#xff1a; 直接模拟一遍斐波那契数列的递增过程&#xff0c;大于n就直接结束。因为后面只会越来越大&#xff0c;跟题目求的最小步数不符。在这个过程中用一个变量去维护这个当前的元素与目标n还差…

【编程TOOL】VC++6.0下载安装配置使用保姆式教程

目录 ​编辑 1.软件介绍 2.软件下载 3.软件安装 3.1.下载得到可执行文件并双击进行安装 3.2. 点击下一步 3.3. 选择安装位置 3.4. 勾选“创建桌面快捷方式”并点击下一步 5. 点击安装并等待 3.6. 先取消运行&#xff0c;后点击完成&#xff0c;软件即安装完毕 4.兼容性配置 4.1…

基于SpringBoot+Vue的疾病防控系统设计与实现(源码+文档+包运行)

一.系统概述 在如今社会上&#xff0c;关于信息上面的处理&#xff0c;没有任何一个企业或者个人会忽视&#xff0c;如何让信息急速传递&#xff0c;并且归档储存查询&#xff0c;采用之前的纸张记录模式已经不符合当前使用要求了。所以&#xff0c;对疾病防控信息管理的提升&a…

IoC与Spring

目录 IoC控制反转 现实案例 特点 目的 DI依赖注入 小总结 介绍Spring 狭义和广义上的Spring 传统编码方式的不足 需求引入 弊端分析 IoC控制反转 现实案例 1、买水果问老板各种水果的口感而不是自己去挨个尝试一遍。 2、买房子找中介而不是自己去花时间找房东。…

别找了,这35份Excel自动排班表真的好用!

别再自己做排班表了&#xff0c;调了半天不好看格式还不对。 看看自己需要的是哪些类型的排班表&#xff1f;是公司值班&#xff0c;还是直播排班&#xff0c;还是考勤汇总&#xff0c;总有一个适合你。 刚整理的35份办公常用的排班表&#xff0c;希望能帮到你&#xff01; …

基于Python的机器学习的文本分类系统

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

CentOS 7安装Redis

说明&#xff1a;本文介绍如何在CentOS 7操作系统下安装Redis 下载安装 首先&#xff0c;去官网上下载所需要安装的版本&#xff0c;官网地址&#xff1a;https://download.redis.io/releases/&#xff0c;我这里下载3.2.1版本的 下载完&#xff0c;上传到云服务器上&#xf…

<router-link>出现Error: No match for {“name“:“home“,“params“:{}}

在将<a></a>标签换到<router-link></router-link>的时候出现No match for {"name":"home","params":{}}这样的错误&#xff0c;其中格式并无错误&#xff0c; <router-link class"navbar-brand active" …

她在《繁花》大放异彩,“浪姐”暴瘦15斤,打脸了不看好她的观众

不知不觉&#xff0c;《浪姐》已经迎来第5季了。播到第4季的时候&#xff0c;改名成《乘风破浪2023》&#xff0c;这一季叫《乘风2024》&#xff0c;和前几季相比&#xff0c;热度依然不减。 都说3个女人一台戏&#xff0c;更何况这个节目&#xff0c;每次能请到30位姐姐&…

刷题。。。。。。

1.ezmd5 根据题目提示 我们知道应该是要上传两张md5值相同的图片 根据原文链接&#xff1a;cryptanalysis - Are there two known strings which have the same MD5 hash value? - Cryptography Stack Exchange 把保存下来的图片上传一下 得到flag 2.ezhttp 根据原文链接&…

node基础 第二篇

01 ffmpeg开源跨平台多媒体处理工具&#xff0c;处理音视频&#xff0c;剪辑&#xff0c;合并&#xff0c;转码等 FFmpeg 的主要功能和特性:1.格式转换:FFmpeg 可以将一个媒体文件从一种格式转换为另一种格式&#xff0c;支持几乎所有常见的音频和视频格式&#xff0c;包括 MP…

冲上热搜-奇安信今年的年终奖。。

最近,奇安信宣布全员无年终奖&#xff0c;同时冲上了脉脉热搜榜第一。作为网安界的一哥&#xff0c;奇安信的决定无疑给许多期待年终奖的员工带来了沉重的打击。 从公司内部的绩效考核机制来看,奇安信将员工分为了5个档次:S、A、B、B、B-。而大多数员工被评定为中等的B档,这意味…

【网络编程】web服务器shttpd源码剖析——命令行和文件配置解析

hello &#xff01;大家好呀&#xff01; 欢迎大家来到我的网络编程系列之web服务器shttpd源码剖析——命令行解析&#xff0c;在这篇文章中&#xff0c;你将会学习到在Linux内核中如何创建一个自己的并发服务器shttpd&#xff0c;并且我会给出源码进行剖析&#xff0c;以及手绘…

C++异常学习

C语言传统的处理错误的方式 传统的错误处理机制&#xff1a; 终止程序&#xff0c;如assert&#xff0c;缺陷&#xff1a;用户难以接受。如发生内存错误&#xff0c;除0错误时就会终止程序。返回错误码&#xff0c;缺陷&#xff1a;需要程序员自己去查找对应的错误。如系统的…

ES增强框架easy-es

因为最近做的功能是关于舆情的,所以数据量比较大的,本来打算用MySQL做时间分表来做,但是经过一段时间的测试,发现数据量太大,用时间分表不能满足性能的要求,所以决定将数据存储改为ES,但是短时间内改底层框架又不是一个小工程,时间上不允许,所以找到了一个很合适的框架,他跟myb…

深入理解JVM中的G1垃圾收集器原理、过程和参数配置

码到三十五 &#xff1a; 个人主页 心中有诗画&#xff0c;指尖舞代码&#xff0c;目光览世界&#xff0c;步履越千山&#xff0c;人间尽值得 ! 在Java虚拟机&#xff08;JVM&#xff09;中&#xff0c;垃圾收集&#xff08;GC&#xff09;是一个自动管理内存的过程&#xff…

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第四套

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第四套 (共9套&#xff0c;有答案和解析&#xff0c;答案非官方&#xff0c;仅供参考&#xff09;&#xff08;共九套&#xff0c;每套四十个选择题&#xff09; 部分题目分享&#xff0c;完整版获取&#xff08;WX:didadida…

「GO基础」起源与演进

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

一文讲明白什么是市场调研

本文主要介绍市场调研的主要步骤和工具方法&#xff0c;并简单介绍了淘宝在电商领域中市场调研的实践。 什么是调研 ▐ 定义 广义的含义&#xff0c;调研既是指市场调查&#xff0c;通过收集、分析和解释相关数据来达到了解企业现状、了解市场趋势、挖掘用户需求、确定产品研发…